Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
-4\sqrt[3]{8}+16\times 4+1=-8+4\times 27^{\frac{1}{3}}
Whakareatia ngā taha e rua o te whārite ki te 4.
-4\times 2+16\times 4+1=-8+4\times 27^{\frac{1}{3}}
Tātaitia te \sqrt[3]{8} kia tae ki 2.
-8+16\times 4+1=-8+4\times 27^{\frac{1}{3}}
Whakareatia te -4 ki te 2, ka -8.
-8+64+1=-8+4\times 27^{\frac{1}{3}}
Whakareatia te 16 ki te 4, ka 64.
56+1=-8+4\times 27^{\frac{1}{3}}
Tāpirihia te -8 ki te 64, ka 56.
57=-8+4\times 27^{\frac{1}{3}}
Tāpirihia te 56 ki te 1, ka 57.
57=-8+4\times 3
Tātaihia te 27 mā te pū o \frac{1}{3}, kia riro ko 3.
57=-8+12
Whakareatia te 4 ki te 3, ka 12.
57=4
Tāpirihia te -8 ki te 12, ka 4.
\text{false}
Whakatauritea te 57 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}