Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-6=-xx+x\times 5
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-6=-x^{2}+x\times 5
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+x\times 5=-6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+x\times 5+6=0
Me tāpiri te 6 ki ngā taha e rua.
-x^{2}+5x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 5 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 6}}{2\left(-1\right)}
Pūrua 5.
x=\frac{-5±\sqrt{25+4\times 6}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-5±\sqrt{25+24}}{2\left(-1\right)}
Whakareatia 4 ki te 6.
x=\frac{-5±\sqrt{49}}{2\left(-1\right)}
Tāpiri 25 ki te 24.
x=\frac{-5±7}{2\left(-1\right)}
Tuhia te pūtakerua o te 49.
x=\frac{-5±7}{-2}
Whakareatia 2 ki te -1.
x=\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-5±7}{-2} ina he tāpiri te ±. Tāpiri -5 ki te 7.
x=-1
Whakawehe 2 ki te -2.
x=-\frac{12}{-2}
Nā, me whakaoti te whārite x=\frac{-5±7}{-2} ina he tango te ±. Tango 7 mai i -5.
x=6
Whakawehe -12 ki te -2.
x=-1 x=6
Kua oti te whārite te whakatau.
-6=-xx+x\times 5
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-6=-x^{2}+x\times 5
Whakareatia te x ki te x, ka x^{2}.
-x^{2}+x\times 5=-6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+5x=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=-\frac{6}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{5}{-1}x=-\frac{6}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-5x=-\frac{6}{-1}
Whakawehe 5 ki te -1.
x^{2}-5x=6
Whakawehe -6 ki te -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
Tāpiri 6 ki te \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Whakarūnātia.
x=6 x=-1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.