Whakaoti mō x
x=-\frac{2}{7}\approx -0.285714286
Graph
Tohaina
Kua tāruatia ki te papatopenga
30\left(-\frac{6}{10}\right)x+12=10\left(x-1\right)+30
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 10,5,3.
30\left(-\frac{3}{5}\right)x+12=10\left(x-1\right)+30
Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{30\left(-3\right)}{5}x+12=10\left(x-1\right)+30
Tuhia te 30\left(-\frac{3}{5}\right) hei hautanga kotahi.
\frac{-90}{5}x+12=10\left(x-1\right)+30
Whakareatia te 30 ki te -3, ka -90.
-18x+12=10\left(x-1\right)+30
Whakawehea te -90 ki te 5, kia riro ko -18.
-18x+12=10x-10+30
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x-1.
-18x+12=10x+20
Tāpirihia te -10 ki te 30, ka 20.
-18x+12-10x=20
Tangohia te 10x mai i ngā taha e rua.
-28x+12=20
Pahekotia te -18x me -10x, ka -28x.
-28x=20-12
Tangohia te 12 mai i ngā taha e rua.
-28x=8
Tangohia te 12 i te 20, ka 8.
x=\frac{8}{-28}
Whakawehea ngā taha e rua ki te -28.
x=-\frac{2}{7}
Whakahekea te hautanga \frac{8}{-28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}