Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

30\left(-\frac{6}{10}\right)x+12=10\left(x-1\right)+30
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 10,5,3.
30\left(-\frac{3}{5}\right)x+12=10\left(x-1\right)+30
Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{30\left(-3\right)}{5}x+12=10\left(x-1\right)+30
Tuhia te 30\left(-\frac{3}{5}\right) hei hautanga kotahi.
\frac{-90}{5}x+12=10\left(x-1\right)+30
Whakareatia te 30 ki te -3, ka -90.
-18x+12=10\left(x-1\right)+30
Whakawehea te -90 ki te 5, kia riro ko -18.
-18x+12=10x-10+30
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x-1.
-18x+12=10x+20
Tāpirihia te -10 ki te 30, ka 20.
-18x+12-10x=20
Tangohia te 10x mai i ngā taha e rua.
-28x+12=20
Pahekotia te -18x me -10x, ka -28x.
-28x=20-12
Tangohia te 12 mai i ngā taha e rua.
-28x=8
Tangohia te 12 i te 20, ka 8.
x=\frac{8}{-28}
Whakawehea ngā taha e rua ki te -28.
x=-\frac{2}{7}
Whakahekea te hautanga \frac{8}{-28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.