Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x.
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
-x\times 4-3x-3=-2x\left(x+1\right)
Hei kimi i te tauaro o 3x+3, kimihia te tauaro o ia taurangi.
-x\times 4-3x-3=-2x^{2}-2x
Whakamahia te āhuatanga tohatoha hei whakarea te -2x ki te x+1.
-x\times 4-3x-3+2x^{2}=-2x
Me tāpiri te 2x^{2} ki ngā taha e rua.
-x\times 4-3x-3+2x^{2}+2x=0
Me tāpiri te 2x ki ngā taha e rua.
-x\times 4-x-3+2x^{2}=0
Pahekotia te -3x me 2x, ka -x.
-4x-x-3+2x^{2}=0
Whakareatia te -1 ki te 4, ka -4.
-5x-3+2x^{2}=0
Pahekotia te -4x me -x, ka -5x.
2x^{2}-5x-3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=2\left(-3\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
Tuhia anō te 2x^{2}-5x-3 hei \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Whakatauwehea atu 2x i te 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x-3=0 me te 2x+1=0.
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x.
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
-x\times 4-3x-3=-2x\left(x+1\right)
Hei kimi i te tauaro o 3x+3, kimihia te tauaro o ia taurangi.
-x\times 4-3x-3=-2x^{2}-2x
Whakamahia te āhuatanga tohatoha hei whakarea te -2x ki te x+1.
-x\times 4-3x-3+2x^{2}=-2x
Me tāpiri te 2x^{2} ki ngā taha e rua.
-x\times 4-3x-3+2x^{2}+2x=0
Me tāpiri te 2x ki ngā taha e rua.
-x\times 4-x-3+2x^{2}=0
Pahekotia te -3x me 2x, ka -x.
-4x-x-3+2x^{2}=0
Whakareatia te -1 ki te 4, ka -4.
-5x-3+2x^{2}=0
Pahekotia te -4x me -x, ka -5x.
2x^{2}-5x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -5 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Whakareatia -8 ki te -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Tāpiri 25 ki te 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Tuhia te pūtakerua o te 49.
x=\frac{5±7}{2\times 2}
Ko te tauaro o -5 ko 5.
x=\frac{5±7}{4}
Whakareatia 2 ki te 2.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{5±7}{4} ina he tāpiri te ±. Tāpiri 5 ki te 7.
x=3
Whakawehe 12 ki te 4.
x=-\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{5±7}{4} ina he tango te ±. Tango 7 mai i 5.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=-\frac{1}{2}
Kua oti te whārite te whakatau.
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x.
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
-x\times 4-3x-3=-2x\left(x+1\right)
Hei kimi i te tauaro o 3x+3, kimihia te tauaro o ia taurangi.
-x\times 4-3x-3=-2x^{2}-2x
Whakamahia te āhuatanga tohatoha hei whakarea te -2x ki te x+1.
-x\times 4-3x-3+2x^{2}=-2x
Me tāpiri te 2x^{2} ki ngā taha e rua.
-x\times 4-3x-3+2x^{2}+2x=0
Me tāpiri te 2x ki ngā taha e rua.
-x\times 4-x-3+2x^{2}=0
Pahekotia te -3x me 2x, ka -x.
-x\times 4-x+2x^{2}=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-4x-x+2x^{2}=3
Whakareatia te -1 ki te 4, ka -4.
-5x+2x^{2}=3
Pahekotia te -4x me -x, ka -5x.
2x^{2}-5x=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}-5x}{2}=\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{5}{2}x=\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Whakawehea te -\frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{4}. Nā, tāpiria te pūrua o te -\frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Pūruatia -\frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Tāpiri \frac{3}{2} ki te \frac{25}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
Tauwehea te x^{2}-\frac{5}{2}x+\frac{25}{16}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
Whakarūnātia.
x=3 x=-\frac{1}{2}
Me tāpiri \frac{5}{4} ki ngā taha e rua o te whārite.