Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Tangohia te \frac{1}{2}x^{2} mai i ngā taha e rua.
x\left(-\frac{4}{3}-\frac{1}{2}x\right)=0
Tauwehea te x.
x=0 x=-\frac{8}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te -\frac{4}{3}-\frac{x}{2}=0.
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Tangohia te \frac{1}{2}x^{2} mai i ngā taha e rua.
-\frac{1}{2}x^{2}-\frac{4}{3}x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}}}{2\left(-\frac{1}{2}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{2} mō a, -\frac{4}{3} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{4}{3}}{2\left(-\frac{1}{2}\right)}
Tuhia te pūtakerua o te \left(-\frac{4}{3}\right)^{2}.
x=\frac{\frac{4}{3}±\frac{4}{3}}{2\left(-\frac{1}{2}\right)}
Ko te tauaro o -\frac{4}{3} ko \frac{4}{3}.
x=\frac{\frac{4}{3}±\frac{4}{3}}{-1}
Whakareatia 2 ki te -\frac{1}{2}.
x=\frac{\frac{8}{3}}{-1}
Nā, me whakaoti te whārite x=\frac{\frac{4}{3}±\frac{4}{3}}{-1} ina he tāpiri te ±. Tāpiri \frac{4}{3} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{8}{3}
Whakawehe \frac{8}{3} ki te -1.
x=\frac{0}{-1}
Nā, me whakaoti te whārite x=\frac{\frac{4}{3}±\frac{4}{3}}{-1} ina he tango te ±. Tango \frac{4}{3} mai i \frac{4}{3} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -1.
x=-\frac{8}{3} x=0
Kua oti te whārite te whakatau.
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Tangohia te \frac{1}{2}x^{2} mai i ngā taha e rua.
-\frac{1}{2}x^{2}-\frac{4}{3}x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}-\frac{4}{3}x}{-\frac{1}{2}}=\frac{0}{-\frac{1}{2}}
Me whakarea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{\frac{4}{3}}{-\frac{1}{2}}\right)x=\frac{0}{-\frac{1}{2}}
Mā te whakawehe ki te -\frac{1}{2} ka wetekia te whakareanga ki te -\frac{1}{2}.
x^{2}+\frac{8}{3}x=\frac{0}{-\frac{1}{2}}
Whakawehe -\frac{4}{3} ki te -\frac{1}{2} mā te whakarea -\frac{4}{3} ki te tau huripoki o -\frac{1}{2}.
x^{2}+\frac{8}{3}x=0
Whakawehe 0 ki te -\frac{1}{2} mā te whakarea 0 ki te tau huripoki o -\frac{1}{2}.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}
Whakawehea te \frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{4}{3}. Nā, tāpiria te pūrua o te \frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{16}{9}
Pūruatia \frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{4}{3}\right)^{2}=\frac{16}{9}
Tauwehea x^{2}+\frac{8}{3}x+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{4}{3}=\frac{4}{3} x+\frac{4}{3}=-\frac{4}{3}
Whakarūnātia.
x=0 x=-\frac{8}{3}
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.