Aromātai
20
Tauwehe
2^{2}\times 5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
- \frac{ 3 }{ 34 } - \frac{ 101 }{ 34 } +4( \frac{ 98 }{ 17 } )
Tohaina
Kua tāruatia ki te papatopenga
\frac{-3-101}{34}+4\times \frac{98}{17}
Tā te mea he rite te tauraro o -\frac{3}{34} me \frac{101}{34}, me tango rāua mā te tango i ō raua taurunga.
\frac{-104}{34}+4\times \frac{98}{17}
Tangohia te 101 i te -3, ka -104.
-\frac{52}{17}+4\times \frac{98}{17}
Whakahekea te hautanga \frac{-104}{34} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{52}{17}+\frac{4\times 98}{17}
Tuhia te 4\times \frac{98}{17} hei hautanga kotahi.
-\frac{52}{17}+\frac{392}{17}
Whakareatia te 4 ki te 98, ka 392.
\frac{-52+392}{17}
Tā te mea he rite te tauraro o -\frac{52}{17} me \frac{392}{17}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{340}{17}
Tāpirihia te -52 ki te 392, ka 340.
20
Whakawehea te 340 ki te 17, kia riro ko 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}