Whakaoti mō v
v = \frac{7}{2} = 3\frac{1}{2} = 3.5
Tohaina
Kua tāruatia ki te papatopenga
-\left(\frac{2}{3}v-\frac{4}{3}\right)\times 3=-6+2\left(v-2\right)
Tē taea kia ōrite te tāupe v ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(v-2\right).
-\left(2v-4\right)=-6+2\left(v-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3}v-\frac{4}{3} ki te 3.
-2v+4=-6+2\left(v-2\right)
Hei kimi i te tauaro o 2v-4, kimihia te tauaro o ia taurangi.
-2v+4=-6+2v-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te v-2.
-2v+4=-10+2v
Tangohia te 4 i te -6, ka -10.
-2v+4-2v=-10
Tangohia te 2v mai i ngā taha e rua.
-4v+4=-10
Pahekotia te -2v me -2v, ka -4v.
-4v=-10-4
Tangohia te 4 mai i ngā taha e rua.
-4v=-14
Tangohia te 4 i te -10, ka -14.
v=\frac{-14}{-4}
Whakawehea ngā taha e rua ki te -4.
v=\frac{7}{2}
Whakahekea te hautanga \frac{-14}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}