Aromātai
\frac{881}{72}\approx 12.236111111
Tauwehe
\frac{881}{2 ^ {3} \cdot 3 ^ {2}} = 12\frac{17}{72} = 12.23611111111111
Tohaina
Kua tāruatia ki te papatopenga
-\frac{199}{72}-\left(-15\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
-\frac{199}{72}+15
Ko te tauaro o -15 ko 15.
-\frac{199}{72}+\frac{1080}{72}
Me tahuri te 15 ki te hautau \frac{1080}{72}.
\frac{-199+1080}{72}
Tā te mea he rite te tauraro o -\frac{199}{72} me \frac{1080}{72}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{881}{72}
Tāpirihia te -199 ki te 1080, ka 881.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}