Aromātai
-\frac{1}{120}\approx -0.008333333
Tauwehe
-\frac{1}{120} = -0.008333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{-1}{60\times 32}+\frac{1}{24}\times \frac{1}{8}-\frac{5}{192}\times \frac{1}{2}
Me whakarea te -\frac{1}{60} ki te \frac{1}{32} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1}{1920}+\frac{1}{24}\times \frac{1}{8}-\frac{5}{192}\times \frac{1}{2}
Mahia ngā whakarea i roto i te hautanga \frac{-1}{60\times 32}.
-\frac{1}{1920}+\frac{1}{24}\times \frac{1}{8}-\frac{5}{192}\times \frac{1}{2}
Ka taea te hautanga \frac{-1}{1920} te tuhi anō ko -\frac{1}{1920} mā te tango i te tohu tōraro.
-\frac{1}{1920}+\frac{1\times 1}{24\times 8}-\frac{5}{192}\times \frac{1}{2}
Me whakarea te \frac{1}{24} ki te \frac{1}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{1}{1920}+\frac{1}{192}-\frac{5}{192}\times \frac{1}{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{24\times 8}.
-\frac{1}{1920}+\frac{10}{1920}-\frac{5}{192}\times \frac{1}{2}
Ko te maha noa iti rawa atu o 1920 me 192 ko 1920. Me tahuri -\frac{1}{1920} me \frac{1}{192} ki te hautau me te tautūnga 1920.
\frac{-1+10}{1920}-\frac{5}{192}\times \frac{1}{2}
Tā te mea he rite te tauraro o -\frac{1}{1920} me \frac{10}{1920}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{1920}-\frac{5}{192}\times \frac{1}{2}
Tāpirihia te -1 ki te 10, ka 9.
\frac{3}{640}-\frac{5}{192}\times \frac{1}{2}
Whakahekea te hautanga \frac{9}{1920} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{3}{640}-\frac{5\times 1}{192\times 2}
Me whakarea te \frac{5}{192} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{640}-\frac{5}{384}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 1}{192\times 2}.
\frac{9}{1920}-\frac{25}{1920}
Ko te maha noa iti rawa atu o 640 me 384 ko 1920. Me tahuri \frac{3}{640} me \frac{5}{384} ki te hautau me te tautūnga 1920.
\frac{9-25}{1920}
Tā te mea he rite te tauraro o \frac{9}{1920} me \frac{25}{1920}, me tango rāua mā te tango i ō raua taurunga.
\frac{-16}{1920}
Tangohia te 25 i te 9, ka -16.
-\frac{1}{120}
Whakahekea te hautanga \frac{-16}{1920} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}