Aromātai
\frac{19}{1920}\approx 0.009895833
Tauwehe
\frac{19}{2 ^ {7} \cdot 3 \cdot 5} = 0.009895833333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{-1}{60\times 32}+\frac{1}{12}\times \frac{1}{8}
Me whakarea te -\frac{1}{60} ki te \frac{1}{32} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1}{1920}+\frac{1}{12}\times \frac{1}{8}
Mahia ngā whakarea i roto i te hautanga \frac{-1}{60\times 32}.
-\frac{1}{1920}+\frac{1}{12}\times \frac{1}{8}
Ka taea te hautanga \frac{-1}{1920} te tuhi anō ko -\frac{1}{1920} mā te tango i te tohu tōraro.
-\frac{1}{1920}+\frac{1\times 1}{12\times 8}
Me whakarea te \frac{1}{12} ki te \frac{1}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{1}{1920}+\frac{1}{96}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{12\times 8}.
-\frac{1}{1920}+\frac{20}{1920}
Ko te maha noa iti rawa atu o 1920 me 96 ko 1920. Me tahuri -\frac{1}{1920} me \frac{1}{96} ki te hautau me te tautūnga 1920.
\frac{-1+20}{1920}
Tā te mea he rite te tauraro o -\frac{1}{1920} me \frac{20}{1920}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{19}{1920}
Tāpirihia te -1 ki te 20, ka 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}