Aromātai
-\frac{31}{3}\approx -10.333333333
Tauwehe
-\frac{31}{3} = -10\frac{1}{3} = -10.333333333333334
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
- \frac{ 1 }{ 6 } \left( 6-18 \right) -12 \frac{ 1 }{ 3 }
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{6}\left(-12\right)-\frac{12\times 3+1}{3}
Tangohia te 18 i te 6, ka -12.
\frac{-\left(-12\right)}{6}-\frac{12\times 3+1}{3}
Tuhia te -\frac{1}{6}\left(-12\right) hei hautanga kotahi.
\frac{12}{6}-\frac{12\times 3+1}{3}
Whakareatia te -1 ki te -12, ka 12.
2-\frac{12\times 3+1}{3}
Whakawehea te 12 ki te 6, kia riro ko 2.
2-\frac{36+1}{3}
Whakareatia te 12 ki te 3, ka 36.
2-\frac{37}{3}
Tāpirihia te 36 ki te 1, ka 37.
\frac{6}{3}-\frac{37}{3}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{6-37}{3}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{37}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{31}{3}
Tangohia te 37 i te 6, ka -31.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}