Whakaoti mō x
x=-1
x=16
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
- \frac{ 1 }{ 5 } { x }^{ 2 } +3x+ \frac{ 16 }{ 5 } =0
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{5}x^{2}+3x+\frac{16}{5}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-\frac{1}{5}\right)\times \frac{16}{5}}}{2\left(-\frac{1}{5}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{5} mō a, 3 mō b, me \frac{16}{5} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-\frac{1}{5}\right)\times \frac{16}{5}}}{2\left(-\frac{1}{5}\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+\frac{4}{5}\times \frac{16}{5}}}{2\left(-\frac{1}{5}\right)}
Whakareatia -4 ki te -\frac{1}{5}.
x=\frac{-3±\sqrt{9+\frac{64}{25}}}{2\left(-\frac{1}{5}\right)}
Whakareatia \frac{4}{5} ki te \frac{16}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-3±\sqrt{\frac{289}{25}}}{2\left(-\frac{1}{5}\right)}
Tāpiri 9 ki te \frac{64}{25}.
x=\frac{-3±\frac{17}{5}}{2\left(-\frac{1}{5}\right)}
Tuhia te pūtakerua o te \frac{289}{25}.
x=\frac{-3±\frac{17}{5}}{-\frac{2}{5}}
Whakareatia 2 ki te -\frac{1}{5}.
x=\frac{\frac{2}{5}}{-\frac{2}{5}}
Nā, me whakaoti te whārite x=\frac{-3±\frac{17}{5}}{-\frac{2}{5}} ina he tāpiri te ±. Tāpiri -3 ki te \frac{17}{5}.
x=-1
Whakawehe \frac{2}{5} ki te -\frac{2}{5} mā te whakarea \frac{2}{5} ki te tau huripoki o -\frac{2}{5}.
x=-\frac{\frac{32}{5}}{-\frac{2}{5}}
Nā, me whakaoti te whārite x=\frac{-3±\frac{17}{5}}{-\frac{2}{5}} ina he tango te ±. Tango \frac{17}{5} mai i -3.
x=16
Whakawehe -\frac{32}{5} ki te -\frac{2}{5} mā te whakarea -\frac{32}{5} ki te tau huripoki o -\frac{2}{5}.
x=-1 x=16
Kua oti te whārite te whakatau.
-\frac{1}{5}x^{2}+3x+\frac{16}{5}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-\frac{1}{5}x^{2}+3x+\frac{16}{5}-\frac{16}{5}=-\frac{16}{5}
Me tango \frac{16}{5} mai i ngā taha e rua o te whārite.
-\frac{1}{5}x^{2}+3x=-\frac{16}{5}
Mā te tango i te \frac{16}{5} i a ia ake anō ka toe ko te 0.
\frac{-\frac{1}{5}x^{2}+3x}{-\frac{1}{5}}=-\frac{\frac{16}{5}}{-\frac{1}{5}}
Me whakarea ngā taha e rua ki te -5.
x^{2}+\frac{3}{-\frac{1}{5}}x=-\frac{\frac{16}{5}}{-\frac{1}{5}}
Mā te whakawehe ki te -\frac{1}{5} ka wetekia te whakareanga ki te -\frac{1}{5}.
x^{2}-15x=-\frac{\frac{16}{5}}{-\frac{1}{5}}
Whakawehe 3 ki te -\frac{1}{5} mā te whakarea 3 ki te tau huripoki o -\frac{1}{5}.
x^{2}-15x=16
Whakawehe -\frac{16}{5} ki te -\frac{1}{5} mā te whakarea -\frac{16}{5} ki te tau huripoki o -\frac{1}{5}.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=16+\left(-\frac{15}{2}\right)^{2}
Whakawehea te -15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{2}. Nā, tāpiria te pūrua o te -\frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-15x+\frac{225}{4}=16+\frac{225}{4}
Pūruatia -\frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-15x+\frac{225}{4}=\frac{289}{4}
Tāpiri 16 ki te \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{289}{4}
Tauwehea x^{2}-15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{2}=\frac{17}{2} x-\frac{15}{2}=-\frac{17}{2}
Whakarūnātia.
x=16 x=-1
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}