Aromātai
-\frac{\left(x-1\right)\left(x+3\right)}{2}
Whakaroha
-\frac{x^{2}}{2}-x+\frac{3}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{1}{2}x-\frac{1}{2}\left(-1\right)\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{2} ki te x-1.
\left(-\frac{1}{2}x+\frac{1}{2}\right)\left(x+3\right)
Whakareatia te -\frac{1}{2} ki te -1, ka \frac{1}{2}.
-\frac{1}{2}xx-\frac{1}{2}x\times 3+\frac{1}{2}x+\frac{1}{2}\times 3
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -\frac{1}{2}x+\frac{1}{2} ki ia tau o x+3.
-\frac{1}{2}x^{2}-\frac{1}{2}x\times 3+\frac{1}{2}x+\frac{1}{2}\times 3
Whakareatia te x ki te x, ka x^{2}.
-\frac{1}{2}x^{2}+\frac{-3}{2}x+\frac{1}{2}x+\frac{1}{2}\times 3
Tuhia te -\frac{1}{2}\times 3 hei hautanga kotahi.
-\frac{1}{2}x^{2}-\frac{3}{2}x+\frac{1}{2}x+\frac{1}{2}\times 3
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
-\frac{1}{2}x^{2}-x+\frac{1}{2}\times 3
Pahekotia te -\frac{3}{2}x me \frac{1}{2}x, ka -x.
-\frac{1}{2}x^{2}-x+\frac{3}{2}
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\left(-\frac{1}{2}x-\frac{1}{2}\left(-1\right)\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{2} ki te x-1.
\left(-\frac{1}{2}x+\frac{1}{2}\right)\left(x+3\right)
Whakareatia te -\frac{1}{2} ki te -1, ka \frac{1}{2}.
-\frac{1}{2}xx-\frac{1}{2}x\times 3+\frac{1}{2}x+\frac{1}{2}\times 3
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o -\frac{1}{2}x+\frac{1}{2} ki ia tau o x+3.
-\frac{1}{2}x^{2}-\frac{1}{2}x\times 3+\frac{1}{2}x+\frac{1}{2}\times 3
Whakareatia te x ki te x, ka x^{2}.
-\frac{1}{2}x^{2}+\frac{-3}{2}x+\frac{1}{2}x+\frac{1}{2}\times 3
Tuhia te -\frac{1}{2}\times 3 hei hautanga kotahi.
-\frac{1}{2}x^{2}-\frac{3}{2}x+\frac{1}{2}x+\frac{1}{2}\times 3
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
-\frac{1}{2}x^{2}-x+\frac{1}{2}\times 3
Pahekotia te -\frac{3}{2}x me \frac{1}{2}x, ka -x.
-\frac{1}{2}x^{2}-x+\frac{3}{2}
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}