Whakaoti mō x
x=-2
x=8
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
- \frac{ 1 }{ 2 } { \left(2-x \right) }^{ 2 } +4+2x+6=x
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{2}\left(4-4x+x^{2}\right)+4+2x+6=x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-x\right)^{2}.
-2+2x-\frac{1}{2}x^{2}+4+2x+6=x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{2} ki te 4-4x+x^{2}.
2+2x-\frac{1}{2}x^{2}+2x+6=x
Tāpirihia te -2 ki te 4, ka 2.
2+4x-\frac{1}{2}x^{2}+6=x
Pahekotia te 2x me 2x, ka 4x.
8+4x-\frac{1}{2}x^{2}=x
Tāpirihia te 2 ki te 6, ka 8.
8+4x-\frac{1}{2}x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
8+3x-\frac{1}{2}x^{2}=0
Pahekotia te 4x me -x, ka 3x.
-\frac{1}{2}x^{2}+3x+8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-\frac{1}{2}\right)\times 8}}{2\left(-\frac{1}{2}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{2} mō a, 3 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-\frac{1}{2}\right)\times 8}}{2\left(-\frac{1}{2}\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+2\times 8}}{2\left(-\frac{1}{2}\right)}
Whakareatia -4 ki te -\frac{1}{2}.
x=\frac{-3±\sqrt{9+16}}{2\left(-\frac{1}{2}\right)}
Whakareatia 2 ki te 8.
x=\frac{-3±\sqrt{25}}{2\left(-\frac{1}{2}\right)}
Tāpiri 9 ki te 16.
x=\frac{-3±5}{2\left(-\frac{1}{2}\right)}
Tuhia te pūtakerua o te 25.
x=\frac{-3±5}{-1}
Whakareatia 2 ki te -\frac{1}{2}.
x=\frac{2}{-1}
Nā, me whakaoti te whārite x=\frac{-3±5}{-1} ina he tāpiri te ±. Tāpiri -3 ki te 5.
x=-2
Whakawehe 2 ki te -1.
x=-\frac{8}{-1}
Nā, me whakaoti te whārite x=\frac{-3±5}{-1} ina he tango te ±. Tango 5 mai i -3.
x=8
Whakawehe -8 ki te -1.
x=-2 x=8
Kua oti te whārite te whakatau.
-\frac{1}{2}\left(4-4x+x^{2}\right)+4+2x+6=x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-x\right)^{2}.
-2+2x-\frac{1}{2}x^{2}+4+2x+6=x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{2} ki te 4-4x+x^{2}.
2+2x-\frac{1}{2}x^{2}+2x+6=x
Tāpirihia te -2 ki te 4, ka 2.
2+4x-\frac{1}{2}x^{2}+6=x
Pahekotia te 2x me 2x, ka 4x.
8+4x-\frac{1}{2}x^{2}=x
Tāpirihia te 2 ki te 6, ka 8.
8+4x-\frac{1}{2}x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
8+3x-\frac{1}{2}x^{2}=0
Pahekotia te 4x me -x, ka 3x.
3x-\frac{1}{2}x^{2}=-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-\frac{1}{2}x^{2}+3x=-8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+3x}{-\frac{1}{2}}=-\frac{8}{-\frac{1}{2}}
Me whakarea ngā taha e rua ki te -2.
x^{2}+\frac{3}{-\frac{1}{2}}x=-\frac{8}{-\frac{1}{2}}
Mā te whakawehe ki te -\frac{1}{2} ka wetekia te whakareanga ki te -\frac{1}{2}.
x^{2}-6x=-\frac{8}{-\frac{1}{2}}
Whakawehe 3 ki te -\frac{1}{2} mā te whakarea 3 ki te tau huripoki o -\frac{1}{2}.
x^{2}-6x=16
Whakawehe -8 ki te -\frac{1}{2} mā te whakarea -8 ki te tau huripoki o -\frac{1}{2}.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=16+9
Pūrua -3.
x^{2}-6x+9=25
Tāpiri 16 ki te 9.
\left(x-3\right)^{2}=25
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=5 x-3=-5
Whakarūnātia.
x=8 x=-2
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}