Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3\left(-36\right)=\left(3x+1\right)^{2}
Tē taea kia ōrite te tāupe x ki -\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(3x+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o \left(1+3x\right)^{2},3.
108=\left(3x+1\right)^{2}
Whakareatia te -3 ki te -36, ka 108.
108=9x^{2}+6x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1=108
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9x^{2}+6x+1-108=0
Tangohia te 108 mai i ngā taha e rua.
9x^{2}+6x-107=0
Tangohia te 108 i te 1, ka -107.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-107\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 6 mō b, me -107 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 9\left(-107\right)}}{2\times 9}
Pūrua 6.
x=\frac{-6±\sqrt{36-36\left(-107\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-6±\sqrt{36+3852}}{2\times 9}
Whakareatia -36 ki te -107.
x=\frac{-6±\sqrt{3888}}{2\times 9}
Tāpiri 36 ki te 3852.
x=\frac{-6±36\sqrt{3}}{2\times 9}
Tuhia te pūtakerua o te 3888.
x=\frac{-6±36\sqrt{3}}{18}
Whakareatia 2 ki te 9.
x=\frac{36\sqrt{3}-6}{18}
Nā, me whakaoti te whārite x=\frac{-6±36\sqrt{3}}{18} ina he tāpiri te ±. Tāpiri -6 ki te 36\sqrt{3}.
x=2\sqrt{3}-\frac{1}{3}
Whakawehe -6+36\sqrt{3} ki te 18.
x=\frac{-36\sqrt{3}-6}{18}
Nā, me whakaoti te whārite x=\frac{-6±36\sqrt{3}}{18} ina he tango te ±. Tango 36\sqrt{3} mai i -6.
x=-2\sqrt{3}-\frac{1}{3}
Whakawehe -6-36\sqrt{3} ki te 18.
x=2\sqrt{3}-\frac{1}{3} x=-2\sqrt{3}-\frac{1}{3}
Kua oti te whārite te whakatau.
-3\left(-36\right)=\left(3x+1\right)^{2}
Tē taea kia ōrite te tāupe x ki -\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(3x+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o \left(1+3x\right)^{2},3.
108=\left(3x+1\right)^{2}
Whakareatia te -3 ki te -36, ka 108.
108=9x^{2}+6x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+1\right)^{2}.
9x^{2}+6x+1=108
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9x^{2}+6x=108-1
Tangohia te 1 mai i ngā taha e rua.
9x^{2}+6x=107
Tangohia te 1 i te 108, ka 107.
\frac{9x^{2}+6x}{9}=\frac{107}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{6}{9}x=\frac{107}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{2}{3}x=\frac{107}{9}
Whakahekea te hautanga \frac{6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{107}{9}+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{107+1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{3}x+\frac{1}{9}=12
Tāpiri \frac{107}{9} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{3}\right)^{2}=12
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{12}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=2\sqrt{3} x+\frac{1}{3}=-2\sqrt{3}
Whakarūnātia.
x=2\sqrt{3}-\frac{1}{3} x=-2\sqrt{3}-\frac{1}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.