Tīpoka ki ngā ihirangi matua
Whakaoti mō d (complex solution)
Tick mark Image
Whakaoti mō k (complex solution)
Tick mark Image
Whakaoti mō d
Tick mark Image
Whakaoti mō k
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Whakareatia ngā taha e rua o te whārite ki te x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Whakareatia te v ki te v, ka v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Tuhia te \left(-\frac{k}{x^{2}}\right)d hei hautanga kotahi.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Tuhia te \frac{-kd}{x^{2}}x^{3} hei hautanga kotahi.
-dkx=mv^{2}dx^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
-dkx-mv^{2}dx^{2}=0
Tangohia te mv^{2}dx^{2} mai i ngā taha e rua.
-dmv^{2}x^{2}-dkx=0
Whakaraupapatia anō ngā kīanga tau.
\left(-mv^{2}x^{2}-kx\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
d=0
Whakawehe 0 ki te -mv^{2}x^{2}-kx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Whakareatia ngā taha e rua o te whārite ki te x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Whakareatia te v ki te v, ka v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Tuhia te \left(-\frac{k}{x^{2}}\right)d hei hautanga kotahi.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Tuhia te \frac{-kd}{x^{2}}x^{3} hei hautanga kotahi.
-dkx=mv^{2}dx^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\left(-dx\right)k=dmv^{2}x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-dx\right)k}{-dx}=\frac{dmv^{2}x^{2}}{-dx}
Whakawehea ngā taha e rua ki te -dx.
k=\frac{dmv^{2}x^{2}}{-dx}
Mā te whakawehe ki te -dx ka wetekia te whakareanga ki te -dx.
k=-mxv^{2}
Whakawehe mv^{2}dx^{2} ki te -dx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Whakareatia ngā taha e rua o te whārite ki te x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Whakareatia te v ki te v, ka v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Tuhia te \left(-\frac{k}{x^{2}}\right)d hei hautanga kotahi.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Tuhia te \frac{-kd}{x^{2}}x^{3} hei hautanga kotahi.
-dkx=mv^{2}dx^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
-dkx-mv^{2}dx^{2}=0
Tangohia te mv^{2}dx^{2} mai i ngā taha e rua.
-dmv^{2}x^{2}-dkx=0
Whakaraupapatia anō ngā kīanga tau.
\left(-mv^{2}x^{2}-kx\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
d=0
Whakawehe 0 ki te -mv^{2}x^{2}-kx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Whakareatia ngā taha e rua o te whārite ki te x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Whakareatia te v ki te v, ka v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Tuhia te \left(-\frac{k}{x^{2}}\right)d hei hautanga kotahi.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Tuhia te \frac{-kd}{x^{2}}x^{3} hei hautanga kotahi.
-dkx=mv^{2}dx^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\left(-dx\right)k=dmv^{2}x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-dx\right)k}{-dx}=\frac{dmv^{2}x^{2}}{-dx}
Whakawehea ngā taha e rua ki te -dx.
k=\frac{dmv^{2}x^{2}}{-dx}
Mā te whakawehe ki te -dx ka wetekia te whakareanga ki te -dx.
k=-mxv^{2}
Whakawehe mv^{2}dx^{2} ki te -dx.