- \frac { k } { x ^ { 2 } } d x = m v d v
Whakaoti mō d (complex solution)
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&k=-mxv^{2}\text{ and }x\neq 0\end{matrix}\right.
Whakaoti mō k (complex solution)
\left\{\begin{matrix}k=-mxv^{2}\text{, }&x\neq 0\\k\in \mathrm{C}\text{, }&d=0\text{ and }x\neq 0\end{matrix}\right.
Whakaoti mō d
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&k=-mxv^{2}\text{ and }x\neq 0\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}k=-mxv^{2}\text{, }&x\neq 0\\k\in \mathrm{R}\text{, }&d=0\text{ and }x\neq 0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Whakareatia ngā taha e rua o te whārite ki te x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Whakareatia te v ki te v, ka v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Tuhia te \left(-\frac{k}{x^{2}}\right)d hei hautanga kotahi.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Tuhia te \frac{-kd}{x^{2}}x^{3} hei hautanga kotahi.
-dkx=mv^{2}dx^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
-dkx-mv^{2}dx^{2}=0
Tangohia te mv^{2}dx^{2} mai i ngā taha e rua.
-dmv^{2}x^{2}-dkx=0
Whakaraupapatia anō ngā kīanga tau.
\left(-mv^{2}x^{2}-kx\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
d=0
Whakawehe 0 ki te -mv^{2}x^{2}-kx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Whakareatia ngā taha e rua o te whārite ki te x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Whakareatia te v ki te v, ka v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Tuhia te \left(-\frac{k}{x^{2}}\right)d hei hautanga kotahi.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Tuhia te \frac{-kd}{x^{2}}x^{3} hei hautanga kotahi.
-dkx=mv^{2}dx^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\left(-dx\right)k=dmv^{2}x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-dx\right)k}{-dx}=\frac{dmv^{2}x^{2}}{-dx}
Whakawehea ngā taha e rua ki te -dx.
k=\frac{dmv^{2}x^{2}}{-dx}
Mā te whakawehe ki te -dx ka wetekia te whakareanga ki te -dx.
k=-mxv^{2}
Whakawehe mv^{2}dx^{2} ki te -dx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Whakareatia ngā taha e rua o te whārite ki te x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Whakareatia te v ki te v, ka v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Tuhia te \left(-\frac{k}{x^{2}}\right)d hei hautanga kotahi.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Tuhia te \frac{-kd}{x^{2}}x^{3} hei hautanga kotahi.
-dkx=mv^{2}dx^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
-dkx-mv^{2}dx^{2}=0
Tangohia te mv^{2}dx^{2} mai i ngā taha e rua.
-dmv^{2}x^{2}-dkx=0
Whakaraupapatia anō ngā kīanga tau.
\left(-mv^{2}x^{2}-kx\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
d=0
Whakawehe 0 ki te -mv^{2}x^{2}-kx.
\left(-\frac{k}{x^{2}}\right)dxx^{2}=mvdvx^{2}
Whakareatia ngā taha e rua o te whārite ki te x^{2}.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mvdvx^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te 2 kia riro ai te 3.
\left(-\frac{k}{x^{2}}\right)dx^{3}=mv^{2}dx^{2}
Whakareatia te v ki te v, ka v^{2}.
\frac{-kd}{x^{2}}x^{3}=mv^{2}dx^{2}
Tuhia te \left(-\frac{k}{x^{2}}\right)d hei hautanga kotahi.
\frac{-kdx^{3}}{x^{2}}=mv^{2}dx^{2}
Tuhia te \frac{-kd}{x^{2}}x^{3} hei hautanga kotahi.
-dkx=mv^{2}dx^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\left(-dx\right)k=dmv^{2}x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(-dx\right)k}{-dx}=\frac{dmv^{2}x^{2}}{-dx}
Whakawehea ngā taha e rua ki te -dx.
k=\frac{dmv^{2}x^{2}}{-dx}
Mā te whakawehe ki te -dx ka wetekia te whakareanga ki te -dx.
k=-mxv^{2}
Whakawehe mv^{2}dx^{2} ki te -dx.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}