Whakaoti mō k
k=-3
k=2
Tohaina
Kua tāruatia ki te papatopenga
-\left(k^{2}+k-6\right)=0
Whakareatia ngā taha e rua o te whārite ki te 2.
-k^{2}-k+6=0
Hei kimi i te tauaro o k^{2}+k-6, kimihia te tauaro o ia taurangi.
a+b=-1 ab=-6=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -k^{2}+ak+bk+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=2 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(-k^{2}+2k\right)+\left(-3k+6\right)
Tuhia anō te -k^{2}-k+6 hei \left(-k^{2}+2k\right)+\left(-3k+6\right).
k\left(-k+2\right)+3\left(-k+2\right)
Tauwehea te k i te tuatahi me te 3 i te rōpū tuarua.
\left(-k+2\right)\left(k+3\right)
Whakatauwehea atu te kīanga pātahi -k+2 mā te whakamahi i te āhuatanga tātai tohatoha.
k=2 k=-3
Hei kimi otinga whārite, me whakaoti te -k+2=0 me te k+3=0.
-\left(k^{2}+k-6\right)=0
Whakareatia ngā taha e rua o te whārite ki te 2.
-k^{2}-k+6=0
Hei kimi i te tauaro o k^{2}+k-6, kimihia te tauaro o ia taurangi.
k=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -1 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-1\right)±\sqrt{1+4\times 6}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
k=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-1\right)}
Whakareatia 4 ki te 6.
k=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-1\right)}
Tāpiri 1 ki te 24.
k=\frac{-\left(-1\right)±5}{2\left(-1\right)}
Tuhia te pūtakerua o te 25.
k=\frac{1±5}{2\left(-1\right)}
Ko te tauaro o -1 ko 1.
k=\frac{1±5}{-2}
Whakareatia 2 ki te -1.
k=\frac{6}{-2}
Nā, me whakaoti te whārite k=\frac{1±5}{-2} ina he tāpiri te ±. Tāpiri 1 ki te 5.
k=-3
Whakawehe 6 ki te -2.
k=-\frac{4}{-2}
Nā, me whakaoti te whārite k=\frac{1±5}{-2} ina he tango te ±. Tango 5 mai i 1.
k=2
Whakawehe -4 ki te -2.
k=-3 k=2
Kua oti te whārite te whakatau.
-\left(k^{2}+k-6\right)=0
Whakareatia ngā taha e rua o te whārite ki te 2.
-k^{2}-k+6=0
Hei kimi i te tauaro o k^{2}+k-6, kimihia te tauaro o ia taurangi.
-k^{2}-k=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-k^{2}-k}{-1}=-\frac{6}{-1}
Whakawehea ngā taha e rua ki te -1.
k^{2}+\left(-\frac{1}{-1}\right)k=-\frac{6}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
k^{2}+k=-\frac{6}{-1}
Whakawehe -1 ki te -1.
k^{2}+k=6
Whakawehe -6 ki te -1.
k^{2}+k+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}+k+\frac{1}{4}=6+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
k^{2}+k+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(k+\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea k^{2}+k+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k+\frac{1}{2}=\frac{5}{2} k+\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
k=2 k=-3
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}