Whakaoti mō b (complex solution)
\left\{\begin{matrix}b=\frac{7-3x}{l}\text{, }&l\neq 0\\b\in \mathrm{C}\text{, }&x=\frac{7}{3}\text{ and }l=0\end{matrix}\right.
Whakaoti mō l (complex solution)
\left\{\begin{matrix}l=\frac{7-3x}{b}\text{, }&b\neq 0\\l\in \mathrm{C}\text{, }&x=\frac{7}{3}\text{ and }b=0\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}b=\frac{7-3x}{l}\text{, }&l\neq 0\\b\in \mathrm{R}\text{, }&x=\frac{7}{3}\text{ and }l=0\end{matrix}\right.
Whakaoti mō l
\left\{\begin{matrix}l=\frac{7-3x}{b}\text{, }&b\neq 0\\l\in \mathrm{R}\text{, }&x=\frac{7}{3}\text{ and }b=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
-bl=2\left(2x-3\right)-\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
-bl=4x-6-\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-3.
-bl=4x-6-x-1
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
-bl=3x-6-1
Pahekotia te 4x me -x, ka 3x.
-bl=3x-7
Tangohia te 1 i te -6, ka -7.
\left(-l\right)b=3x-7
He hanga arowhānui tō te whārite.
\frac{\left(-l\right)b}{-l}=\frac{3x-7}{-l}
Whakawehea ngā taha e rua ki te -l.
b=\frac{3x-7}{-l}
Mā te whakawehe ki te -l ka wetekia te whakareanga ki te -l.
b=\frac{7-3x}{l}
Whakawehe -7+3x ki te -l.
-bl=2\left(2x-3\right)-\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
-bl=4x-6-\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-3.
-bl=4x-6-x-1
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
-bl=3x-6-1
Pahekotia te 4x me -x, ka 3x.
-bl=3x-7
Tangohia te 1 i te -6, ka -7.
\left(-b\right)l=3x-7
He hanga arowhānui tō te whārite.
\frac{\left(-b\right)l}{-b}=\frac{3x-7}{-b}
Whakawehea ngā taha e rua ki te -b.
l=\frac{3x-7}{-b}
Mā te whakawehe ki te -b ka wetekia te whakareanga ki te -b.
l=\frac{7-3x}{b}
Whakawehe -7+3x ki te -b.
-bl=2\left(2x-3\right)-\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
-bl=4x-6-\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-3.
-bl=4x-6-x-1
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
-bl=3x-6-1
Pahekotia te 4x me -x, ka 3x.
-bl=3x-7
Tangohia te 1 i te -6, ka -7.
\left(-l\right)b=3x-7
He hanga arowhānui tō te whārite.
\frac{\left(-l\right)b}{-l}=\frac{3x-7}{-l}
Whakawehea ngā taha e rua ki te -l.
b=\frac{3x-7}{-l}
Mā te whakawehe ki te -l ka wetekia te whakareanga ki te -l.
b=\frac{7-3x}{l}
Whakawehe 3x-7 ki te -l.
-bl=2\left(2x-3\right)-\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
-bl=4x-6-\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-3.
-bl=4x-6-x-1
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
-bl=3x-6-1
Pahekotia te 4x me -x, ka 3x.
-bl=3x-7
Tangohia te 1 i te -6, ka -7.
\left(-b\right)l=3x-7
He hanga arowhānui tō te whārite.
\frac{\left(-b\right)l}{-b}=\frac{3x-7}{-b}
Whakawehea ngā taha e rua ki te -b.
l=\frac{3x-7}{-b}
Mā te whakawehe ki te -b ka wetekia te whakareanga ki te -b.
l=\frac{7-3x}{b}
Whakawehe 3x-7 ki te -b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}