Aromātai
\frac{9}{200}=0.045
Tauwehe
\frac{3 ^ {2}}{2 ^ {3} \cdot 5 ^ {2}} = 0.045
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1168}{3000}+\frac{1751\times 4}{15000}-\frac{163}{5000}
Whakareatia te 73 ki te 16, ka 1168.
-\frac{146}{375}+\frac{1751\times 4}{15000}-\frac{163}{5000}
Whakahekea te hautanga \frac{1168}{3000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
-\frac{146}{375}+\frac{7004}{15000}-\frac{163}{5000}
Whakareatia te 1751 ki te 4, ka 7004.
-\frac{146}{375}+\frac{1751}{3750}-\frac{163}{5000}
Whakahekea te hautanga \frac{7004}{15000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-\frac{1460}{3750}+\frac{1751}{3750}-\frac{163}{5000}
Ko te maha noa iti rawa atu o 375 me 3750 ko 3750. Me tahuri -\frac{146}{375} me \frac{1751}{3750} ki te hautau me te tautūnga 3750.
\frac{-1460+1751}{3750}-\frac{163}{5000}
Tā te mea he rite te tauraro o -\frac{1460}{3750} me \frac{1751}{3750}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{291}{3750}-\frac{163}{5000}
Tāpirihia te -1460 ki te 1751, ka 291.
\frac{97}{1250}-\frac{163}{5000}
Whakahekea te hautanga \frac{291}{3750} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{388}{5000}-\frac{163}{5000}
Ko te maha noa iti rawa atu o 1250 me 5000 ko 5000. Me tahuri \frac{97}{1250} me \frac{163}{5000} ki te hautau me te tautūnga 5000.
\frac{388-163}{5000}
Tā te mea he rite te tauraro o \frac{388}{5000} me \frac{163}{5000}, me tango rāua mā te tango i ō raua taurunga.
\frac{225}{5000}
Tangohia te 163 i te 388, ka 225.
\frac{9}{200}
Whakahekea te hautanga \frac{225}{5000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}