Whakaoti mō x
x = \frac{115}{18} = 6\frac{7}{18} \approx 6.388888889
Graph
Tohaina
Kua tāruatia ki te papatopenga
-126x+18\left(2\times 5+1\right)=-\left(6\times 90+67\right)
Me whakarea ngā taha e rua o te whārite ki te 90, arā, te tauraro pātahi he tino iti rawa te kitea o 5,90.
-126x+18\left(10+1\right)=-\left(6\times 90+67\right)
Whakareatia te 2 ki te 5, ka 10.
-126x+18\times 11=-\left(6\times 90+67\right)
Tāpirihia te 10 ki te 1, ka 11.
-126x+198=-\left(6\times 90+67\right)
Whakareatia te 18 ki te 11, ka 198.
-126x+198=-\left(540+67\right)
Whakareatia te 6 ki te 90, ka 540.
-126x+198=-607
Tāpirihia te 540 ki te 67, ka 607.
-126x=-607-198
Tangohia te 198 mai i ngā taha e rua.
-126x=-805
Tangohia te 198 i te -607, ka -805.
x=\frac{-805}{-126}
Whakawehea ngā taha e rua ki te -126.
x=\frac{115}{18}
Whakahekea te hautanga \frac{-805}{-126} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}