Whakaoti mō v
v = -\frac{9}{7} = -1\frac{2}{7} \approx -1.285714286
Tohaina
Kua tāruatia ki te papatopenga
-\frac{7}{2}v-5-\frac{7}{3}v=\frac{5}{2}
Tangohia te \frac{7}{3}v mai i ngā taha e rua.
-\frac{35}{6}v-5=\frac{5}{2}
Pahekotia te -\frac{7}{2}v me -\frac{7}{3}v, ka -\frac{35}{6}v.
-\frac{35}{6}v=\frac{5}{2}+5
Me tāpiri te 5 ki ngā taha e rua.
-\frac{35}{6}v=\frac{5}{2}+\frac{10}{2}
Me tahuri te 5 ki te hautau \frac{10}{2}.
-\frac{35}{6}v=\frac{5+10}{2}
Tā te mea he rite te tauraro o \frac{5}{2} me \frac{10}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{35}{6}v=\frac{15}{2}
Tāpirihia te 5 ki te 10, ka 15.
v=\frac{15}{2}\left(-\frac{6}{35}\right)
Me whakarea ngā taha e rua ki te -\frac{6}{35}, te tau utu o -\frac{35}{6}.
v=\frac{15\left(-6\right)}{2\times 35}
Me whakarea te \frac{15}{2} ki te -\frac{6}{35} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
v=\frac{-90}{70}
Mahia ngā whakarea i roto i te hautanga \frac{15\left(-6\right)}{2\times 35}.
v=-\frac{9}{7}
Whakahekea te hautanga \frac{-90}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}