Aromātai
-\frac{35}{12}\approx -2.916666667
Tauwehe
-\frac{35}{12} = -2\frac{11}{12} = -2.9166666666666665
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{5}{6}}{-3+\frac{7}{2}}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Whakawehea te 1 ki te 1, kia riro ko 1.
\frac{-\frac{5}{6}}{-\frac{6}{2}+\frac{7}{2}}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Me tahuri te -3 ki te hautau -\frac{6}{2}.
\frac{-\frac{5}{6}}{\frac{-6+7}{2}}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Tā te mea he rite te tauraro o -\frac{6}{2} me \frac{7}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{5}{6}}{\frac{1}{2}}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Tāpirihia te -6 ki te 7, ka 1.
-\frac{5}{6}\times 2-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Whakawehe -\frac{5}{6} ki te \frac{1}{2} mā te whakarea -\frac{5}{6} ki te tau huripoki o \frac{1}{2}.
\frac{-5\times 2}{6}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Tuhia te -\frac{5}{6}\times 2 hei hautanga kotahi.
\frac{-10}{6}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Whakareatia te -5 ki te 2, ka -10.
-\frac{5}{3}-\frac{1}{2}\left(-3\left(\frac{1}{2}-1\right)+1\right)
Whakahekea te hautanga \frac{-10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{5}{3}-\frac{1}{2}\left(-3\left(\frac{1}{2}-\frac{2}{2}\right)+1\right)
Me tahuri te 1 ki te hautau \frac{2}{2}.
-\frac{5}{3}-\frac{1}{2}\left(-3\times \frac{1-2}{2}+1\right)
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{3}-\frac{1}{2}\left(-3\left(-\frac{1}{2}\right)+1\right)
Tangohia te 2 i te 1, ka -1.
-\frac{5}{3}-\frac{1}{2}\left(\frac{-3\left(-1\right)}{2}+1\right)
Tuhia te -3\left(-\frac{1}{2}\right) hei hautanga kotahi.
-\frac{5}{3}-\frac{1}{2}\left(\frac{3}{2}+1\right)
Whakareatia te -3 ki te -1, ka 3.
-\frac{5}{3}-\frac{1}{2}\left(\frac{3}{2}+\frac{2}{2}\right)
Me tahuri te 1 ki te hautau \frac{2}{2}.
-\frac{5}{3}-\frac{1}{2}\times \frac{3+2}{2}
Tā te mea he rite te tauraro o \frac{3}{2} me \frac{2}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{5}{3}-\frac{1}{2}\times \frac{5}{2}
Tāpirihia te 3 ki te 2, ka 5.
-\frac{5}{3}-\frac{1\times 5}{2\times 2}
Me whakarea te \frac{1}{2} ki te \frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{5}{3}-\frac{5}{4}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 5}{2\times 2}.
-\frac{20}{12}-\frac{15}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri -\frac{5}{3} me \frac{5}{4} ki te hautau me te tautūnga 12.
\frac{-20-15}{12}
Tā te mea he rite te tauraro o -\frac{20}{12} me \frac{15}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{35}{12}
Tangohia te 15 i te -20, ka -35.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}