Aromātai
-1.75
Tauwehe
-1.75
Tohaina
Kua tāruatia ki te papatopenga
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\left(\frac{1}{2}\right)^{4}\left(-3.2\right)\right)}{-\frac{2\times 5+4}{5}}
Tātaihia te -\frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{1}{16}\left(-3.2\right)\right)}{-\frac{2\times 5+4}{5}}
Tātaihia te \frac{1}{2} mā te pū o 4, kia riro ko \frac{1}{16}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{1}{16}\left(-\frac{16}{5}\right)\right)}{-\frac{2\times 5+4}{5}}
Me tahuri ki tau ā-ira -3.2 ki te hautau -\frac{32}{10}. Whakahekea te hautanga -\frac{32}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{1\left(-16\right)}{16\times 5}\right)}{-\frac{2\times 5+4}{5}}
Me whakarea te \frac{1}{16} ki te -\frac{16}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\frac{-16}{80}\right)}{-\frac{2\times 5+4}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-16\right)}{16\times 5}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}-\left(-\frac{1}{5}\right)\right)}{-\frac{2\times 5+4}{5}}
Whakahekea te hautanga \frac{-16}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}+\frac{1}{5}\right)}{-\frac{2\times 5+4}{5}}
Ko te tauaro o -\frac{1}{5} ko \frac{1}{5}.
-\frac{5}{4}+\frac{\frac{5}{2}\left(\frac{9}{25}+\frac{5}{25}\right)}{-\frac{2\times 5+4}{5}}
Ko te maha noa iti rawa atu o 25 me 5 ko 25. Me tahuri \frac{9}{25} me \frac{1}{5} ki te hautau me te tautūnga 25.
-\frac{5}{4}+\frac{\frac{5}{2}\times \frac{9+5}{25}}{-\frac{2\times 5+4}{5}}
Tā te mea he rite te tauraro o \frac{9}{25} me \frac{5}{25}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{5}{4}+\frac{\frac{5}{2}\times \frac{14}{25}}{-\frac{2\times 5+4}{5}}
Tāpirihia te 9 ki te 5, ka 14.
-\frac{5}{4}+\frac{\frac{5\times 14}{2\times 25}}{-\frac{2\times 5+4}{5}}
Me whakarea te \frac{5}{2} ki te \frac{14}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{5}{4}+\frac{\frac{70}{50}}{-\frac{2\times 5+4}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 14}{2\times 25}.
-\frac{5}{4}+\frac{\frac{7}{5}}{-\frac{2\times 5+4}{5}}
Whakahekea te hautanga \frac{70}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
-\frac{5}{4}+\frac{\frac{7}{5}}{-\frac{10+4}{5}}
Whakareatia te 2 ki te 5, ka 10.
-\frac{5}{4}+\frac{\frac{7}{5}}{-\frac{14}{5}}
Tāpirihia te 10 ki te 4, ka 14.
-\frac{5}{4}+\frac{7}{5}\left(-\frac{5}{14}\right)
Whakawehe \frac{7}{5} ki te -\frac{14}{5} mā te whakarea \frac{7}{5} ki te tau huripoki o -\frac{14}{5}.
-\frac{5}{4}+\frac{7\left(-5\right)}{5\times 14}
Me whakarea te \frac{7}{5} ki te -\frac{5}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{5}{4}+\frac{-35}{70}
Mahia ngā whakarea i roto i te hautanga \frac{7\left(-5\right)}{5\times 14}.
-\frac{5}{4}-\frac{1}{2}
Whakahekea te hautanga \frac{-35}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 35.
-\frac{5}{4}-\frac{2}{4}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri -\frac{5}{4} me \frac{1}{2} ki te hautau me te tautūnga 4.
\frac{-5-2}{4}
Tā te mea he rite te tauraro o -\frac{5}{4} me \frac{2}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{4}
Tangohia te 2 i te -5, ka -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}