Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-\frac{5}{3}x-\frac{5}{2}-\frac{1}{2}x=-7
Tangohia te \frac{1}{2}x mai i ngā taha e rua.
-\frac{13}{6}x-\frac{5}{2}=-7
Pahekotia te -\frac{5}{3}x me -\frac{1}{2}x, ka -\frac{13}{6}x.
-\frac{13}{6}x=-7+\frac{5}{2}
Me tāpiri te \frac{5}{2} ki ngā taha e rua.
-\frac{13}{6}x=-\frac{14}{2}+\frac{5}{2}
Me tahuri te -7 ki te hautau -\frac{14}{2}.
-\frac{13}{6}x=\frac{-14+5}{2}
Tā te mea he rite te tauraro o -\frac{14}{2} me \frac{5}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{13}{6}x=-\frac{9}{2}
Tāpirihia te -14 ki te 5, ka -9.
x=-\frac{9}{2}\left(-\frac{6}{13}\right)
Me whakarea ngā taha e rua ki te -\frac{6}{13}, te tau utu o -\frac{13}{6}.
x=\frac{-9\left(-6\right)}{2\times 13}
Me whakarea te -\frac{9}{2} ki te -\frac{6}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{54}{26}
Mahia ngā whakarea i roto i te hautanga \frac{-9\left(-6\right)}{2\times 13}.
x=\frac{27}{13}
Whakahekea te hautanga \frac{54}{26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.