Whakaoti mō x
x=-\frac{11}{21}\approx -0.523809524
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{5}{2}x-\frac{5}{2}-x=-\frac{2}{3}
Tangohia te x mai i ngā taha e rua.
-\frac{7}{2}x-\frac{5}{2}=-\frac{2}{3}
Pahekotia te -\frac{5}{2}x me -x, ka -\frac{7}{2}x.
-\frac{7}{2}x=-\frac{2}{3}+\frac{5}{2}
Me tāpiri te \frac{5}{2} ki ngā taha e rua.
-\frac{7}{2}x=-\frac{4}{6}+\frac{15}{6}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri -\frac{2}{3} me \frac{5}{2} ki te hautau me te tautūnga 6.
-\frac{7}{2}x=\frac{-4+15}{6}
Tā te mea he rite te tauraro o -\frac{4}{6} me \frac{15}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{7}{2}x=\frac{11}{6}
Tāpirihia te -4 ki te 15, ka 11.
x=\frac{11}{6}\left(-\frac{2}{7}\right)
Me whakarea ngā taha e rua ki te -\frac{2}{7}, te tau utu o -\frac{7}{2}.
x=\frac{11\left(-2\right)}{6\times 7}
Me whakarea te \frac{11}{6} ki te -\frac{2}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-22}{42}
Mahia ngā whakarea i roto i te hautanga \frac{11\left(-2\right)}{6\times 7}.
x=-\frac{11}{21}
Whakahekea te hautanga \frac{-22}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}