- \frac { 4 a + b } { 2 } + \frac { 2 a + 3 b } { 4 } - 3 ( \frac { a - b } { 2 } - \frac { 3 a - b } { 3 }
Aromātai
\frac{3b}{4}
Whakaroha
\frac{3b}{4}
Tohaina
Kua tāruatia ki te papatopenga
-\frac{2\left(4a+b\right)}{4}+\frac{2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 4 ko 4. Whakareatia -\frac{4a+b}{2} ki te \frac{2}{2}.
\frac{-2\left(4a+b\right)+2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Tā te mea he rite te tauraro o -\frac{2\left(4a+b\right)}{4} me \frac{2a+3b}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-8a-2b+2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Mahia ngā whakarea i roto o -2\left(4a+b\right)+2a+3b.
\frac{-6a+b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Whakakotahitia ngā kupu rite i -8a-2b+2a+3b.
\frac{-6a+b}{4}-3\left(\frac{3\left(a-b\right)}{6}-\frac{2\left(3a-b\right)}{6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{a-b}{2} ki te \frac{3}{3}. Whakareatia \frac{3a-b}{3} ki te \frac{2}{2}.
\frac{-6a+b}{4}-3\times \frac{3\left(a-b\right)-2\left(3a-b\right)}{6}
Tā te mea he rite te tauraro o \frac{3\left(a-b\right)}{6} me \frac{2\left(3a-b\right)}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{-6a+b}{4}-3\times \frac{3a-3b-6a+2b}{6}
Mahia ngā whakarea i roto o 3\left(a-b\right)-2\left(3a-b\right).
\frac{-6a+b}{4}-3\times \frac{-3a-b}{6}
Whakakotahitia ngā kupu rite i 3a-3b-6a+2b.
\frac{-6a+b}{4}-\frac{-3a-b}{2}
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 3 me te 6.
\frac{-6a+b}{4}-\frac{2\left(-3a-b\right)}{4}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 2 ko 4. Whakareatia \frac{-3a-b}{2} ki te \frac{2}{2}.
\frac{-6a+b-2\left(-3a-b\right)}{4}
Tā te mea he rite te tauraro o \frac{-6a+b}{4} me \frac{2\left(-3a-b\right)}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-6a+b+6a+2b}{4}
Mahia ngā whakarea i roto o -6a+b-2\left(-3a-b\right).
\frac{3b}{4}
Whakakotahitia ngā kupu rite i -6a+b+6a+2b.
-\frac{2\left(4a+b\right)}{4}+\frac{2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 4 ko 4. Whakareatia -\frac{4a+b}{2} ki te \frac{2}{2}.
\frac{-2\left(4a+b\right)+2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Tā te mea he rite te tauraro o -\frac{2\left(4a+b\right)}{4} me \frac{2a+3b}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-8a-2b+2a+3b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Mahia ngā whakarea i roto o -2\left(4a+b\right)+2a+3b.
\frac{-6a+b}{4}-3\left(\frac{a-b}{2}-\frac{3a-b}{3}\right)
Whakakotahitia ngā kupu rite i -8a-2b+2a+3b.
\frac{-6a+b}{4}-3\left(\frac{3\left(a-b\right)}{6}-\frac{2\left(3a-b\right)}{6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{a-b}{2} ki te \frac{3}{3}. Whakareatia \frac{3a-b}{3} ki te \frac{2}{2}.
\frac{-6a+b}{4}-3\times \frac{3\left(a-b\right)-2\left(3a-b\right)}{6}
Tā te mea he rite te tauraro o \frac{3\left(a-b\right)}{6} me \frac{2\left(3a-b\right)}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{-6a+b}{4}-3\times \frac{3a-3b-6a+2b}{6}
Mahia ngā whakarea i roto o 3\left(a-b\right)-2\left(3a-b\right).
\frac{-6a+b}{4}-3\times \frac{-3a-b}{6}
Whakakotahitia ngā kupu rite i 3a-3b-6a+2b.
\frac{-6a+b}{4}-\frac{-3a-b}{2}
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 3 me te 6.
\frac{-6a+b}{4}-\frac{2\left(-3a-b\right)}{4}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 2 ko 4. Whakareatia \frac{-3a-b}{2} ki te \frac{2}{2}.
\frac{-6a+b-2\left(-3a-b\right)}{4}
Tā te mea he rite te tauraro o \frac{-6a+b}{4} me \frac{2\left(-3a-b\right)}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-6a+b+6a+2b}{4}
Mahia ngā whakarea i roto o -6a+b-2\left(-3a-b\right).
\frac{3b}{4}
Whakakotahitia ngā kupu rite i -6a+b+6a+2b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}