Whakaoti mō s
s=\frac{1}{3}\approx 0.333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{4}{9}\left(-\frac{3}{4}\right)=s
Me whakarea ngā taha e rua ki te -\frac{3}{4}, te tau utu o -\frac{4}{3}.
\frac{-4\left(-3\right)}{9\times 4}=s
Me whakarea te -\frac{4}{9} ki te -\frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{12}{36}=s
Mahia ngā whakarea i roto i te hautanga \frac{-4\left(-3\right)}{9\times 4}.
\frac{1}{3}=s
Whakahekea te hautanga \frac{12}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
s=\frac{1}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}