Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-\frac{4}{3}\times 3\sqrt{2}}{2}\sqrt{8}x
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{-4\sqrt{2}}{2}\sqrt{8}x
Me whakakore te 3 me te 3.
-2\sqrt{2}\sqrt{8}x
Whakawehea te -4\sqrt{2} ki te 2, kia riro ko -2\sqrt{2}.
-2\sqrt{2}\times 2\sqrt{2}x
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
-4\sqrt{2}\sqrt{2}x
Whakareatia te -2 ki te 2, ka -4.
-4\times 2x
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
-8x
Whakareatia te -4 ki te 2, ka -8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\frac{4}{3}\times 3\sqrt{2}}{2}\sqrt{8}x)
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-4\sqrt{2}}{2}\sqrt{8}x)
Me whakakore te 3 me te 3.
\frac{\mathrm{d}}{\mathrm{d}x}(-2\sqrt{2}\sqrt{8}x)
Whakawehea te -4\sqrt{2} ki te 2, kia riro ko -2\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-2\sqrt{2}\times 2\sqrt{2}x)
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\sqrt{2}\sqrt{2}x)
Whakareatia te -2 ki te 2, ka -4.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times 2x)
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-8x)
Whakareatia te -4 ki te 2, ka -8.
-8x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-8x^{0}
Tango 1 mai i 1.
-8
Mō tētahi kupu t mahue te 0, t^{0}=1.