Aromātai
\frac{135}{7}\approx 19.285714286
Tauwehe
\frac{5 \cdot 3 ^ {3}}{7} = 19\frac{2}{7} = 19.285714285714285
Tohaina
Kua tāruatia ki te papatopenga
-\frac{3}{7}\times \frac{1}{2}\left(-4.5\right)\times 20
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{-3}{7\times 2}\left(-4.5\right)\times 20
Me whakarea te -\frac{3}{7} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-3}{14}\left(-4.5\right)\times 20
Mahia ngā whakarea i roto i te hautanga \frac{-3}{7\times 2}.
-\frac{3}{14}\left(-4.5\right)\times 20
Ka taea te hautanga \frac{-3}{14} te tuhi anō ko -\frac{3}{14} mā te tango i te tohu tōraro.
-\frac{3}{14}\left(-\frac{9}{2}\right)\times 20
Me tahuri ki tau ā-ira -4.5 ki te hautau -\frac{45}{10}. Whakahekea te hautanga -\frac{45}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{-3\left(-9\right)}{14\times 2}\times 20
Me whakarea te -\frac{3}{14} ki te -\frac{9}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{27}{28}\times 20
Mahia ngā whakarea i roto i te hautanga \frac{-3\left(-9\right)}{14\times 2}.
\frac{27\times 20}{28}
Tuhia te \frac{27}{28}\times 20 hei hautanga kotahi.
\frac{540}{28}
Whakareatia te 27 ki te 20, ka 540.
\frac{135}{7}
Whakahekea te hautanga \frac{540}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}