Aromātai
-\frac{42}{25}=-1.68
Tauwehe
-\frac{42}{25} = -1\frac{17}{25} = -1.68
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{3}{5}}{\frac{2}{7}\times \frac{4+1}{4}}
Whakareatia te 1 ki te 4, ka 4.
\frac{-\frac{3}{5}}{\frac{2}{7}\times \frac{5}{4}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{-\frac{3}{5}}{\frac{2\times 5}{7\times 4}}
Me whakarea te \frac{2}{7} ki te \frac{5}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\frac{3}{5}}{\frac{10}{28}}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 5}{7\times 4}.
\frac{-\frac{3}{5}}{\frac{5}{14}}
Whakahekea te hautanga \frac{10}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{3}{5}\times \frac{14}{5}
Whakawehe -\frac{3}{5} ki te \frac{5}{14} mā te whakarea -\frac{3}{5} ki te tau huripoki o \frac{5}{14}.
\frac{-3\times 14}{5\times 5}
Me whakarea te -\frac{3}{5} ki te \frac{14}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-42}{25}
Mahia ngā whakarea i roto i te hautanga \frac{-3\times 14}{5\times 5}.
-\frac{42}{25}
Ka taea te hautanga \frac{-42}{25} te tuhi anō ko -\frac{42}{25} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}