Aromātai
\frac{197459}{500}=394.918
Tauwehe
\frac{379 \cdot 521}{2 ^ {2} \cdot 5 ^ {3}} = 394\frac{459}{500} = 394.918
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{-\frac{3}{4}\times \frac{50+21}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakareatia te 2 ki te 25, ka 50.
\frac{\frac{-\frac{3}{4}\times \frac{71}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Tāpirihia te 50 ki te 21, ka 71.
\frac{\frac{\frac{-3\times 71}{4\times 25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Me whakarea te -\frac{3}{4} ki te \frac{71}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{\frac{-213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-3\times 71}{4\times 25}.
\frac{\frac{-\frac{213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Ka taea te hautanga \frac{-213}{100} te tuhi anō ko -\frac{213}{100} mā te tango i te tohu tōraro.
\frac{\frac{-\frac{213}{100}}{\frac{15+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakareatia te 3 ki te 5, ka 15.
\frac{\frac{-\frac{213}{100}}{\frac{18}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Tāpirihia te 15 ki te 3, ka 18.
\frac{-\frac{213}{100}\times \frac{5}{18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakawehe -\frac{213}{100} ki te \frac{18}{5} mā te whakarea -\frac{213}{100} ki te tau huripoki o \frac{18}{5}.
\frac{\frac{-213\times 5}{100\times 18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Me whakarea te -\frac{213}{100} ki te \frac{5}{18} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{-1065}{1800}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-213\times 5}{100\times 18}.
\frac{-\frac{71}{120}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakahekea te hautanga \frac{-1065}{1800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{-\frac{71}{120}}{-\frac{2+1}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakareatia te 1 ki te 2, ka 2.
\frac{-\frac{71}{120}}{-\frac{3}{2}}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Tāpirihia te 2 ki te 1, ka 3.
-\frac{71}{120}\left(-\frac{2}{3}\right)\times \frac{50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakawehe -\frac{71}{120} ki te -\frac{3}{2} mā te whakarea -\frac{71}{120} ki te tau huripoki o -\frac{3}{2}.
\frac{-71\left(-2\right)}{120\times 3}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Me whakarea te -\frac{71}{120} ki te -\frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{142}{360}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-71\left(-2\right)}{120\times 3}.
\frac{71}{180}\times \frac{1\times 50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakahekea te hautanga \frac{142}{360} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{71}{180}\times \frac{50+21}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakareatia te 1 ki te 50, ka 50.
\frac{71}{180}\times \frac{71}{50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Tāpirihia te 50 ki te 21, ka 71.
\frac{71\times 71}{180\times 50}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Me whakarea te \frac{71}{180} ki te \frac{71}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5041}{9000}\left(-18\right)-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Mahia ngā whakarea i roto i te hautanga \frac{71\times 71}{180\times 50}.
\frac{5041\left(-18\right)}{9000}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Tuhia te \frac{5041}{9000}\left(-18\right) hei hautanga kotahi.
\frac{-90738}{9000}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakareatia te 5041 ki te -18, ka -90738.
-\frac{5041}{500}-\left(-2\right)^{2}\times 25\left(-\frac{4\times 20+1}{20}\right)
Whakahekea te hautanga \frac{-90738}{9000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
-\frac{5041}{500}-4\times 25\left(-\frac{4\times 20+1}{20}\right)
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
-\frac{5041}{500}-100\left(-\frac{4\times 20+1}{20}\right)
Whakareatia te 4 ki te 25, ka 100.
-\frac{5041}{500}-100\left(-\frac{80+1}{20}\right)
Whakareatia te 4 ki te 20, ka 80.
-\frac{5041}{500}-100\left(-\frac{81}{20}\right)
Tāpirihia te 80 ki te 1, ka 81.
-\frac{5041}{500}-\frac{100\left(-81\right)}{20}
Tuhia te 100\left(-\frac{81}{20}\right) hei hautanga kotahi.
-\frac{5041}{500}-\frac{-8100}{20}
Whakareatia te 100 ki te -81, ka -8100.
-\frac{5041}{500}-\left(-405\right)
Whakawehea te -8100 ki te 20, kia riro ko -405.
-\frac{5041}{500}+405
Ko te tauaro o -405 ko 405.
-\frac{5041}{500}+\frac{202500}{500}
Me tahuri te 405 ki te hautau \frac{202500}{500}.
\frac{-5041+202500}{500}
Tā te mea he rite te tauraro o -\frac{5041}{500} me \frac{202500}{500}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{197459}{500}
Tāpirihia te -5041 ki te 202500, ka 197459.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}