Whakaoti mō x
x\leq -\frac{15}{2}
Graph
Pātaitai
Algebra
- \frac { 3 } { 4 } + \frac { 4 x } { 5 } \geq \frac { 11 } { 8 } + x - \frac { 5 } { 8 }
Tohaina
Kua tāruatia ki te papatopenga
-30+8\times 4x\geq 55+40x-25
Me whakarea ngā taha e rua o te whārite ki te 40, arā, te tauraro pātahi he tino iti rawa te kitea o 4,5,8. I te mea he tōrunga te 40, kāore e huri te ahunga koreōrite.
-30+32x\geq 55+40x-25
Whakareatia te 8 ki te 4, ka 32.
-30+32x\geq 30+40x
Tangohia te 25 i te 55, ka 30.
-30+32x-40x\geq 30
Tangohia te 40x mai i ngā taha e rua.
-30-8x\geq 30
Pahekotia te 32x me -40x, ka -8x.
-8x\geq 30+30
Me tāpiri te 30 ki ngā taha e rua.
-8x\geq 60
Tāpirihia te 30 ki te 30, ka 60.
x\leq \frac{60}{-8}
Whakawehea ngā taha e rua ki te -8. I te mea he tōraro a -8, ka huri te ahunga koreōrite.
x\leq -\frac{15}{2}
Whakahekea te hautanga \frac{60}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}