Whakaoti mō x (complex solution)
x=\frac{1+\sqrt{23}i}{2}\approx 0.5+2.397915762i
x=\frac{-\sqrt{23}i+1}{2}\approx 0.5-2.397915762i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\left(2x^{2}-2x+12\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-2\right)\left(-x-2\right).
-2x^{2}+2x-12=0
Hei kimi i te tauaro o 2x^{2}-2x+12, kimihia te tauaro o ia taurangi.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 2 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+8\left(-12\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-2±\sqrt{4-96}}{2\left(-2\right)}
Whakareatia 8 ki te -12.
x=\frac{-2±\sqrt{-92}}{2\left(-2\right)}
Tāpiri 4 ki te -96.
x=\frac{-2±2\sqrt{23}i}{2\left(-2\right)}
Tuhia te pūtakerua o te -92.
x=\frac{-2±2\sqrt{23}i}{-4}
Whakareatia 2 ki te -2.
x=\frac{-2+2\sqrt{23}i}{-4}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{23}i}{-4} ina he tāpiri te ±. Tāpiri -2 ki te 2i\sqrt{23}.
x=\frac{-\sqrt{23}i+1}{2}
Whakawehe -2+2i\sqrt{23} ki te -4.
x=\frac{-2\sqrt{23}i-2}{-4}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{23}i}{-4} ina he tango te ±. Tango 2i\sqrt{23} mai i -2.
x=\frac{1+\sqrt{23}i}{2}
Whakawehe -2-2i\sqrt{23} ki te -4.
x=\frac{-\sqrt{23}i+1}{2} x=\frac{1+\sqrt{23}i}{2}
Kua oti te whārite te whakatau.
-\left(2x^{2}-2x+12\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-2\right)\left(-x-2\right).
-2x^{2}+2x-12=0
Hei kimi i te tauaro o 2x^{2}-2x+12, kimihia te tauaro o ia taurangi.
-2x^{2}+2x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-2x^{2}+2x}{-2}=\frac{12}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{2}{-2}x=\frac{12}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-x=\frac{12}{-2}
Whakawehe 2 ki te -2.
x^{2}-x=-6
Whakawehe 12 ki te -2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=-6+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=-\frac{23}{4}
Tāpiri -6 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{23}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{23}i}{2} x-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
Whakarūnātia.
x=\frac{1+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}