Whakaoti mō v
v=2\pi R^{2}
R\neq 0
Whakaoti mō R
R=\frac{\sqrt{\frac{2v}{\pi }}}{2}
R=-\frac{\sqrt{\frac{2v}{\pi }}}{2}\text{, }v>0
Tohaina
Kua tāruatia ki te papatopenga
-2v+4\pi RR=0
Whakareatia ngā taha e rua o te whārite ki te R.
-2v+4\pi R^{2}=0
Whakareatia te R ki te R, ka R^{2}.
-2v=-4\pi R^{2}
Tangohia te 4\pi R^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-2v}{-2}=-\frac{4\pi R^{2}}{-2}
Whakawehea ngā taha e rua ki te -2.
v=-\frac{4\pi R^{2}}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
v=2\pi R^{2}
Whakawehe -4\pi R^{2} ki te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}