Whakaoti mō x
x=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2\times 2\left(x-3\right)+7-3\left(x-2\right)=18x-6\left(x-2\right)-9\times 3\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 18, arā, te tauraro pātahi he tino iti rawa te kitea o 9,18,6,3,2.
-4\left(x-3\right)+7-3\left(x-2\right)=18x-6\left(x-2\right)-9\times 3\left(x+1\right)
Whakareatia te -2 ki te 2, ka -4.
-4x+12+7-3\left(x-2\right)=18x-6\left(x-2\right)-9\times 3\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-3.
-4x+19-3\left(x-2\right)=18x-6\left(x-2\right)-9\times 3\left(x+1\right)
Tāpirihia te 12 ki te 7, ka 19.
-4x+19-3x+6=18x-6\left(x-2\right)-9\times 3\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2.
-7x+19+6=18x-6\left(x-2\right)-9\times 3\left(x+1\right)
Pahekotia te -4x me -3x, ka -7x.
-7x+25=18x-6\left(x-2\right)-9\times 3\left(x+1\right)
Tāpirihia te 19 ki te 6, ka 25.
-7x+25=18x-6x+12-9\times 3\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te x-2.
-7x+25=12x+12-9\times 3\left(x+1\right)
Pahekotia te 18x me -6x, ka 12x.
-7x+25=12x+12-27\left(x+1\right)
Whakareatia te -9 ki te 3, ka -27.
-7x+25=12x+12-27x-27
Whakamahia te āhuatanga tohatoha hei whakarea te -27 ki te x+1.
-7x+25=-15x+12-27
Pahekotia te 12x me -27x, ka -15x.
-7x+25=-15x-15
Tangohia te 27 i te 12, ka -15.
-7x+25+15x=-15
Me tāpiri te 15x ki ngā taha e rua.
8x+25=-15
Pahekotia te -7x me 15x, ka 8x.
8x=-15-25
Tangohia te 25 mai i ngā taha e rua.
8x=-40
Tangohia te 25 i te -15, ka -40.
x=\frac{-40}{8}
Whakawehea ngā taha e rua ki te 8.
x=-5
Whakawehea te -40 ki te 8, kia riro ko -5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}