Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x^{2}+\frac{1}{2}\right)^{2}=-\frac{3}{8}\left(-\frac{5}{2}\right)
Me whakarea ngā taha e rua ki te -\frac{5}{2}, te tau utu o -\frac{2}{5}.
\left(x^{2}+\frac{1}{2}\right)^{2}=\frac{15}{16}
Whakareatia te -\frac{3}{8} ki te -\frac{5}{2}, ka \frac{15}{16}.
\left(x^{2}\right)^{2}+x^{2}+\frac{1}{4}=\frac{15}{16}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x^{2}+\frac{1}{2}\right)^{2}.
x^{4}+x^{2}+\frac{1}{4}=\frac{15}{16}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
x^{4}+x^{2}+\frac{1}{4}-\frac{15}{16}=0
Tangohia te \frac{15}{16} mai i ngā taha e rua.
x^{4}+x^{2}-\frac{11}{16}=0
Tangohia te \frac{15}{16} i te \frac{1}{4}, ka -\frac{11}{16}.
t^{2}+t-\frac{11}{16}=0
Whakakapia te t mō te x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-\frac{11}{16}\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te -\frac{11}{16} mō te c i te ture pūrua.
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2}
Mahia ngā tātaitai.
t=\frac{\sqrt{15}}{4}-\frac{1}{2} t=-\frac{\sqrt{15}}{4}-\frac{1}{2}
Whakaotia te whārite t=\frac{-1±\frac{1}{2}\sqrt{15}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=-\frac{\sqrt{\sqrt{15}-2}}{2} x=\frac{\sqrt{\sqrt{15}-2}}{2} x=-\frac{i\sqrt{\sqrt{15}+2}}{2} x=\frac{i\sqrt{\sqrt{15}+2}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
\left(x^{2}+\frac{1}{2}\right)^{2}=-\frac{3}{8}\left(-\frac{5}{2}\right)
Me whakarea ngā taha e rua ki te -\frac{5}{2}, te tau utu o -\frac{2}{5}.
\left(x^{2}+\frac{1}{2}\right)^{2}=\frac{15}{16}
Whakareatia te -\frac{3}{8} ki te -\frac{5}{2}, ka \frac{15}{16}.
\left(x^{2}\right)^{2}+x^{2}+\frac{1}{4}=\frac{15}{16}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x^{2}+\frac{1}{2}\right)^{2}.
x^{4}+x^{2}+\frac{1}{4}=\frac{15}{16}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
x^{4}+x^{2}+\frac{1}{4}-\frac{15}{16}=0
Tangohia te \frac{15}{16} mai i ngā taha e rua.
x^{4}+x^{2}-\frac{11}{16}=0
Tangohia te \frac{15}{16} i te \frac{1}{4}, ka -\frac{11}{16}.
t^{2}+t-\frac{11}{16}=0
Whakakapia te t mō te x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-\frac{11}{16}\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te -\frac{11}{16} mō te c i te ture pūrua.
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2}
Mahia ngā tātaitai.
t=\frac{\sqrt{15}}{4}-\frac{1}{2} t=-\frac{\sqrt{15}}{4}-\frac{1}{2}
Whakaotia te whārite t=\frac{-1±\frac{1}{2}\sqrt{15}}{2} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{\sqrt{15}-2}}{2} x=-\frac{\sqrt{\sqrt{15}-2}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.