Aromātai
a = -\frac{1}{4} = -0.25
Whakaroha
a = -\frac{1}{4} = -0.25
Tohaina
Kua tāruatia ki te papatopenga
-\frac{2}{3}\left(-\frac{3}{2}\right)a-\frac{2}{3}\times \frac{3}{8}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{2}{3} ki te -\frac{3}{2}a+\frac{3}{8}.
\frac{-2\left(-3\right)}{3\times 2}a-\frac{2}{3}\times \frac{3}{8}
Me whakarea te -\frac{2}{3} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6}{6}a-\frac{2}{3}\times \frac{3}{8}
Mahia ngā whakarea i roto i te hautanga \frac{-2\left(-3\right)}{3\times 2}.
1a-\frac{2}{3}\times \frac{3}{8}
Whakawehea te 6 ki te 6, kia riro ko 1.
1a+\frac{-2\times 3}{3\times 8}
Me whakarea te -\frac{2}{3} ki te \frac{3}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1a+\frac{-2}{8}
Me whakakore tahi te 3 i te taurunga me te tauraro.
1a-\frac{1}{4}
Whakahekea te hautanga \frac{-2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a-\frac{1}{4}
Mō tētahi kupu t, t\times 1=t me 1t=t.
-\frac{2}{3}\left(-\frac{3}{2}\right)a-\frac{2}{3}\times \frac{3}{8}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{2}{3} ki te -\frac{3}{2}a+\frac{3}{8}.
\frac{-2\left(-3\right)}{3\times 2}a-\frac{2}{3}\times \frac{3}{8}
Me whakarea te -\frac{2}{3} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6}{6}a-\frac{2}{3}\times \frac{3}{8}
Mahia ngā whakarea i roto i te hautanga \frac{-2\left(-3\right)}{3\times 2}.
1a-\frac{2}{3}\times \frac{3}{8}
Whakawehea te 6 ki te 6, kia riro ko 1.
1a+\frac{-2\times 3}{3\times 8}
Me whakarea te -\frac{2}{3} ki te \frac{3}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1a+\frac{-2}{8}
Me whakakore tahi te 3 i te taurunga me te tauraro.
1a-\frac{1}{4}
Whakahekea te hautanga \frac{-2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a-\frac{1}{4}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}