Aromātai
\frac{31}{6}\approx 5.166666667
Tauwehe
\frac{31}{2 \cdot 3} = 5\frac{1}{6} = 5.166666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{-2\times 2}{3}+\frac{13}{2}
Tuhia te -\frac{2}{3}\times 2 hei hautanga kotahi.
\frac{-4}{3}+\frac{13}{2}
Whakareatia te -2 ki te 2, ka -4.
-\frac{4}{3}+\frac{13}{2}
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
-\frac{8}{6}+\frac{39}{6}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri -\frac{4}{3} me \frac{13}{2} ki te hautau me te tautūnga 6.
\frac{-8+39}{6}
Tā te mea he rite te tauraro o -\frac{8}{6} me \frac{39}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{31}{6}
Tāpirihia te -8 ki te 39, ka 31.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}