Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\frac{-2\times 3}{3\times 5}+\frac{5}{2}-\frac{3}{5}\times \frac{1}{6}
Me whakarea te -\frac{2}{3} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-2}{5}+\frac{5}{2}-\frac{3}{5}\times \frac{1}{6}
Me whakakore tahi te 3 i te taurunga me te tauraro.
-\frac{2}{5}+\frac{5}{2}-\frac{3}{5}\times \frac{1}{6}
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
-\frac{4}{10}+\frac{25}{10}-\frac{3}{5}\times \frac{1}{6}
Ko te maha noa iti rawa atu o 5 me 2 ko 10. Me tahuri -\frac{2}{5} me \frac{5}{2} ki te hautau me te tautūnga 10.
\frac{-4+25}{10}-\frac{3}{5}\times \frac{1}{6}
Tā te mea he rite te tauraro o -\frac{4}{10} me \frac{25}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{21}{10}-\frac{3}{5}\times \frac{1}{6}
Tāpirihia te -4 ki te 25, ka 21.
\frac{21}{10}-\frac{3\times 1}{5\times 6}
Me whakarea te \frac{3}{5} ki te \frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{21}{10}-\frac{3}{30}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 1}{5\times 6}.
\frac{21}{10}-\frac{1}{10}
Whakahekea te hautanga \frac{3}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{21-1}{10}
Tā te mea he rite te tauraro o \frac{21}{10} me \frac{1}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{20}{10}
Tangohia te 1 i te 21, ka 20.
2
Whakawehea te 20 ki te 10, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}