Whakaoti mō t
t=\frac{15+15\sqrt{15}i}{16}\approx 0.9375+3.630921887i
t=\frac{-15\sqrt{15}i+15}{16}\approx 0.9375-3.630921887i
Tohaina
Kua tāruatia ki te papatopenga
-\frac{16}{5}t^{2}+6t=45
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-\frac{16}{5}t^{2}+6t-45=45-45
Me tango 45 mai i ngā taha e rua o te whārite.
-\frac{16}{5}t^{2}+6t-45=0
Mā te tango i te 45 i a ia ake anō ka toe ko te 0.
t=\frac{-6±\sqrt{6^{2}-4\left(-\frac{16}{5}\right)\left(-45\right)}}{2\left(-\frac{16}{5}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{16}{5} mō a, 6 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±\sqrt{36-4\left(-\frac{16}{5}\right)\left(-45\right)}}{2\left(-\frac{16}{5}\right)}
Pūrua 6.
t=\frac{-6±\sqrt{36+\frac{64}{5}\left(-45\right)}}{2\left(-\frac{16}{5}\right)}
Whakareatia -4 ki te -\frac{16}{5}.
t=\frac{-6±\sqrt{36-576}}{2\left(-\frac{16}{5}\right)}
Whakareatia \frac{64}{5} ki te -45.
t=\frac{-6±\sqrt{-540}}{2\left(-\frac{16}{5}\right)}
Tāpiri 36 ki te -576.
t=\frac{-6±6\sqrt{15}i}{2\left(-\frac{16}{5}\right)}
Tuhia te pūtakerua o te -540.
t=\frac{-6±6\sqrt{15}i}{-\frac{32}{5}}
Whakareatia 2 ki te -\frac{16}{5}.
t=\frac{-6+6\sqrt{15}i}{-\frac{32}{5}}
Nā, me whakaoti te whārite t=\frac{-6±6\sqrt{15}i}{-\frac{32}{5}} ina he tāpiri te ±. Tāpiri -6 ki te 6i\sqrt{15}.
t=\frac{-15\sqrt{15}i+15}{16}
Whakawehe -6+6i\sqrt{15} ki te -\frac{32}{5} mā te whakarea -6+6i\sqrt{15} ki te tau huripoki o -\frac{32}{5}.
t=\frac{-6\sqrt{15}i-6}{-\frac{32}{5}}
Nā, me whakaoti te whārite t=\frac{-6±6\sqrt{15}i}{-\frac{32}{5}} ina he tango te ±. Tango 6i\sqrt{15} mai i -6.
t=\frac{15+15\sqrt{15}i}{16}
Whakawehe -6-6i\sqrt{15} ki te -\frac{32}{5} mā te whakarea -6-6i\sqrt{15} ki te tau huripoki o -\frac{32}{5}.
t=\frac{-15\sqrt{15}i+15}{16} t=\frac{15+15\sqrt{15}i}{16}
Kua oti te whārite te whakatau.
-\frac{16}{5}t^{2}+6t=45
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{16}{5}t^{2}+6t}{-\frac{16}{5}}=\frac{45}{-\frac{16}{5}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{16}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
t^{2}+\frac{6}{-\frac{16}{5}}t=\frac{45}{-\frac{16}{5}}
Mā te whakawehe ki te -\frac{16}{5} ka wetekia te whakareanga ki te -\frac{16}{5}.
t^{2}-\frac{15}{8}t=\frac{45}{-\frac{16}{5}}
Whakawehe 6 ki te -\frac{16}{5} mā te whakarea 6 ki te tau huripoki o -\frac{16}{5}.
t^{2}-\frac{15}{8}t=-\frac{225}{16}
Whakawehe 45 ki te -\frac{16}{5} mā te whakarea 45 ki te tau huripoki o -\frac{16}{5}.
t^{2}-\frac{15}{8}t+\left(-\frac{15}{16}\right)^{2}=-\frac{225}{16}+\left(-\frac{15}{16}\right)^{2}
Whakawehea te -\frac{15}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{16}. Nā, tāpiria te pūrua o te -\frac{15}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{15}{8}t+\frac{225}{256}=-\frac{225}{16}+\frac{225}{256}
Pūruatia -\frac{15}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{15}{8}t+\frac{225}{256}=-\frac{3375}{256}
Tāpiri -\frac{225}{16} ki te \frac{225}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{15}{16}\right)^{2}=-\frac{3375}{256}
Tauwehea t^{2}-\frac{15}{8}t+\frac{225}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{15}{16}\right)^{2}}=\sqrt{-\frac{3375}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{15}{16}=\frac{15\sqrt{15}i}{16} t-\frac{15}{16}=-\frac{15\sqrt{15}i}{16}
Whakarūnātia.
t=\frac{15+15\sqrt{15}i}{16} t=\frac{-15\sqrt{15}i+15}{16}
Me tāpiri \frac{15}{16} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}