Aromātai
-26
Tauwehe
-26
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
- \frac { 13 } { 17 } \times 19 - \frac { 13 } { 17 } \times 15
Tohaina
Kua tāruatia ki te papatopenga
\frac{-13\times 19}{17}-\frac{13}{17}\times 15
Tuhia te -\frac{13}{17}\times 19 hei hautanga kotahi.
\frac{-247}{17}-\frac{13}{17}\times 15
Whakareatia te -13 ki te 19, ka -247.
-\frac{247}{17}-\frac{13}{17}\times 15
Ka taea te hautanga \frac{-247}{17} te tuhi anō ko -\frac{247}{17} mā te tango i te tohu tōraro.
-\frac{247}{17}-\frac{13\times 15}{17}
Tuhia te \frac{13}{17}\times 15 hei hautanga kotahi.
-\frac{247}{17}-\frac{195}{17}
Whakareatia te 13 ki te 15, ka 195.
\frac{-247-195}{17}
Tā te mea he rite te tauraro o -\frac{247}{17} me \frac{195}{17}, me tango rāua mā te tango i ō raua taurunga.
\frac{-442}{17}
Tangohia te 195 i te -247, ka -442.
-26
Whakawehea te -442 ki te 17, kia riro ko -26.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}