Aromātai
\frac{11}{6}\approx 1.833333333
Tauwehe
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{4}+\frac{24+1}{12}
Whakareatia te 2 ki te 12, ka 24.
-\frac{1}{4}+\frac{25}{12}
Tāpirihia te 24 ki te 1, ka 25.
-\frac{3}{12}+\frac{25}{12}
Ko te maha noa iti rawa atu o 4 me 12 ko 12. Me tahuri -\frac{1}{4} me \frac{25}{12} ki te hautau me te tautūnga 12.
\frac{-3+25}{12}
Tā te mea he rite te tauraro o -\frac{3}{12} me \frac{25}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{22}{12}
Tāpirihia te -3 ki te 25, ka 22.
\frac{11}{6}
Whakahekea te hautanga \frac{22}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}