Whakaoti mō x
x = \frac{23}{6} = 3\frac{5}{6} \approx 3.833333333
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
Me tāpiri te x^{2} ki ngā taha e rua.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Tangohia te \frac{7}{2}x mai i ngā taha e rua.
-\frac{23}{6}x+2+x^{2}=2
Pahekotia te -\frac{1}{3}x me -\frac{7}{2}x, ka -\frac{23}{6}x.
-\frac{23}{6}x+2+x^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
-\frac{23}{6}x+x^{2}=0
Tangohia te 2 i te 2, ka 0.
x\left(-\frac{23}{6}+x\right)=0
Tauwehea te x.
x=0 x=\frac{23}{6}
Hei kimi otinga whārite, me whakaoti te x=0 me te -\frac{23}{6}+x=0.
-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
Me tāpiri te x^{2} ki ngā taha e rua.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Tangohia te \frac{7}{2}x mai i ngā taha e rua.
-\frac{23}{6}x+2+x^{2}=2
Pahekotia te -\frac{1}{3}x me -\frac{7}{2}x, ka -\frac{23}{6}x.
-\frac{23}{6}x+2+x^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
-\frac{23}{6}x+x^{2}=0
Tangohia te 2 i te 2, ka 0.
x^{2}-\frac{23}{6}x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{23}{6}\right)±\sqrt{\left(-\frac{23}{6}\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -\frac{23}{6} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{23}{6}\right)±\frac{23}{6}}{2}
Tuhia te pūtakerua o te \left(-\frac{23}{6}\right)^{2}.
x=\frac{\frac{23}{6}±\frac{23}{6}}{2}
Ko te tauaro o -\frac{23}{6} ko \frac{23}{6}.
x=\frac{\frac{23}{3}}{2}
Nā, me whakaoti te whārite x=\frac{\frac{23}{6}±\frac{23}{6}}{2} ina he tāpiri te ±. Tāpiri \frac{23}{6} ki te \frac{23}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{23}{6}
Whakawehe \frac{23}{3} ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{\frac{23}{6}±\frac{23}{6}}{2} ina he tango te ±. Tango \frac{23}{6} mai i \frac{23}{6} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te 2.
x=\frac{23}{6} x=0
Kua oti te whārite te whakatau.
-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
Me tāpiri te x^{2} ki ngā taha e rua.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Tangohia te \frac{7}{2}x mai i ngā taha e rua.
-\frac{23}{6}x+2+x^{2}=2
Pahekotia te -\frac{1}{3}x me -\frac{7}{2}x, ka -\frac{23}{6}x.
-\frac{23}{6}x+2+x^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
-\frac{23}{6}x+x^{2}=0
Tangohia te 2 i te 2, ka 0.
x^{2}-\frac{23}{6}x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-\frac{23}{6}x+\left(-\frac{23}{12}\right)^{2}=\left(-\frac{23}{12}\right)^{2}
Whakawehea te -\frac{23}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{23}{12}. Nā, tāpiria te pūrua o te -\frac{23}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{23}{6}x+\frac{529}{144}=\frac{529}{144}
Pūruatia -\frac{23}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{23}{12}\right)^{2}=\frac{529}{144}
Tauwehea x^{2}-\frac{23}{6}x+\frac{529}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{23}{12}=\frac{23}{12} x-\frac{23}{12}=-\frac{23}{12}
Whakarūnātia.
x=\frac{23}{6} x=0
Me tāpiri \frac{23}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}