Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{3}\left(-6\right)-\frac{1}{3}\left(-9\right)x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te -6-9x.
\frac{-\left(-6\right)}{3}-\frac{1}{3}\left(-9\right)x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Tuhia te -\frac{1}{3}\left(-6\right) hei hautanga kotahi.
\frac{6}{3}-\frac{1}{3}\left(-9\right)x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Whakareatia te -1 ki te -6, ka 6.
2-\frac{1}{3}\left(-9\right)x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Whakawehea te 6 ki te 3, kia riro ko 2.
2+\frac{-\left(-9\right)}{3}x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Tuhia te -\frac{1}{3}\left(-9\right) hei hautanga kotahi.
2+\frac{9}{3}x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Whakareatia te -1 ki te -9, ka 9.
2+3x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Whakawehea te 9 ki te 3, kia riro ko 3.
2+103x-\left(x+1\right)=3\left(33x+4\right)-2
Pahekotia te 3x me 100x, ka 103x.
2+103x-x-1=3\left(33x+4\right)-2
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
2+102x-1=3\left(33x+4\right)-2
Pahekotia te 103x me -x, ka 102x.
1+102x=3\left(33x+4\right)-2
Tangohia te 1 i te 2, ka 1.
1+102x=99x+12-2
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 33x+4.
1+102x=99x+10
Tangohia te 2 i te 12, ka 10.
1+102x-99x=10
Tangohia te 99x mai i ngā taha e rua.
1+3x=10
Pahekotia te 102x me -99x, ka 3x.
3x=10-1
Tangohia te 1 mai i ngā taha e rua.
3x=9
Tangohia te 1 i te 10, ka 9.
x=\frac{9}{3}
Whakawehea ngā taha e rua ki te 3.
x=3
Whakawehea te 9 ki te 3, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}