Whakaoti mō x
x=-4
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{2}x^{2}-x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{1}{2}\right)\times 4}}{2\left(-\frac{1}{2}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{2} mō a, -1 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+2\times 4}}{2\left(-\frac{1}{2}\right)}
Whakareatia -4 ki te -\frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-\frac{1}{2}\right)}
Whakareatia 2 ki te 4.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-\frac{1}{2}\right)}
Tāpiri 1 ki te 8.
x=\frac{-\left(-1\right)±3}{2\left(-\frac{1}{2}\right)}
Tuhia te pūtakerua o te 9.
x=\frac{1±3}{2\left(-\frac{1}{2}\right)}
Ko te tauaro o -1 ko 1.
x=\frac{1±3}{-1}
Whakareatia 2 ki te -\frac{1}{2}.
x=\frac{4}{-1}
Nā, me whakaoti te whārite x=\frac{1±3}{-1} ina he tāpiri te ±. Tāpiri 1 ki te 3.
x=-4
Whakawehe 4 ki te -1.
x=-\frac{2}{-1}
Nā, me whakaoti te whārite x=\frac{1±3}{-1} ina he tango te ±. Tango 3 mai i 1.
x=2
Whakawehe -2 ki te -1.
x=-4 x=2
Kua oti te whārite te whakatau.
-\frac{1}{2}x^{2}-x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-\frac{1}{2}x^{2}-x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
-\frac{1}{2}x^{2}-x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{-\frac{1}{2}x^{2}-x}{-\frac{1}{2}}=-\frac{4}{-\frac{1}{2}}
Me whakarea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{1}{-\frac{1}{2}}\right)x=-\frac{4}{-\frac{1}{2}}
Mā te whakawehe ki te -\frac{1}{2} ka wetekia te whakareanga ki te -\frac{1}{2}.
x^{2}+2x=-\frac{4}{-\frac{1}{2}}
Whakawehe -1 ki te -\frac{1}{2} mā te whakarea -1 ki te tau huripoki o -\frac{1}{2}.
x^{2}+2x=8
Whakawehe -4 ki te -\frac{1}{2} mā te whakarea -4 ki te tau huripoki o -\frac{1}{2}.
x^{2}+2x+1^{2}=8+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=8+1
Pūrua 1.
x^{2}+2x+1=9
Tāpiri 8 ki te 1.
\left(x+1\right)^{2}=9
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=3 x+1=-3
Whakarūnātia.
x=2 x=-4
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}