Whakaoti mō x
x=2\sqrt{7}+4\approx 9.291502622
x=4-2\sqrt{7}\approx -1.291502622
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{2}x+1+\frac{1}{4}x^{2}=\frac{3}{2}x+4
Me tāpiri te \frac{1}{4}x^{2} ki ngā taha e rua.
-\frac{1}{2}x+1+\frac{1}{4}x^{2}-\frac{3}{2}x=4
Tangohia te \frac{3}{2}x mai i ngā taha e rua.
-2x+1+\frac{1}{4}x^{2}=4
Pahekotia te -\frac{1}{2}x me -\frac{3}{2}x, ka -2x.
-2x+1+\frac{1}{4}x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
-2x-3+\frac{1}{4}x^{2}=0
Tangohia te 4 i te 1, ka -3.
\frac{1}{4}x^{2}-2x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{4}\left(-3\right)}}{2\times \frac{1}{4}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{4} mō a, -2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{4}\left(-3\right)}}{2\times \frac{1}{4}}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-\left(-3\right)}}{2\times \frac{1}{4}}
Whakareatia -4 ki te \frac{1}{4}.
x=\frac{-\left(-2\right)±\sqrt{4+3}}{2\times \frac{1}{4}}
Whakareatia -1 ki te -3.
x=\frac{-\left(-2\right)±\sqrt{7}}{2\times \frac{1}{4}}
Tāpiri 4 ki te 3.
x=\frac{2±\sqrt{7}}{2\times \frac{1}{4}}
Ko te tauaro o -2 ko 2.
x=\frac{2±\sqrt{7}}{\frac{1}{2}}
Whakareatia 2 ki te \frac{1}{4}.
x=\frac{\sqrt{7}+2}{\frac{1}{2}}
Nā, me whakaoti te whārite x=\frac{2±\sqrt{7}}{\frac{1}{2}} ina he tāpiri te ±. Tāpiri 2 ki te \sqrt{7}.
x=2\sqrt{7}+4
Whakawehe 2+\sqrt{7} ki te \frac{1}{2} mā te whakarea 2+\sqrt{7} ki te tau huripoki o \frac{1}{2}.
x=\frac{2-\sqrt{7}}{\frac{1}{2}}
Nā, me whakaoti te whārite x=\frac{2±\sqrt{7}}{\frac{1}{2}} ina he tango te ±. Tango \sqrt{7} mai i 2.
x=4-2\sqrt{7}
Whakawehe 2-\sqrt{7} ki te \frac{1}{2} mā te whakarea 2-\sqrt{7} ki te tau huripoki o \frac{1}{2}.
x=2\sqrt{7}+4 x=4-2\sqrt{7}
Kua oti te whārite te whakatau.
-\frac{1}{2}x+1+\frac{1}{4}x^{2}=\frac{3}{2}x+4
Me tāpiri te \frac{1}{4}x^{2} ki ngā taha e rua.
-\frac{1}{2}x+1+\frac{1}{4}x^{2}-\frac{3}{2}x=4
Tangohia te \frac{3}{2}x mai i ngā taha e rua.
-2x+1+\frac{1}{4}x^{2}=4
Pahekotia te -\frac{1}{2}x me -\frac{3}{2}x, ka -2x.
-2x+\frac{1}{4}x^{2}=4-1
Tangohia te 1 mai i ngā taha e rua.
-2x+\frac{1}{4}x^{2}=3
Tangohia te 1 i te 4, ka 3.
\frac{1}{4}x^{2}-2x=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{1}{4}x^{2}-2x}{\frac{1}{4}}=\frac{3}{\frac{1}{4}}
Me whakarea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{2}{\frac{1}{4}}\right)x=\frac{3}{\frac{1}{4}}
Mā te whakawehe ki te \frac{1}{4} ka wetekia te whakareanga ki te \frac{1}{4}.
x^{2}-8x=\frac{3}{\frac{1}{4}}
Whakawehe -2 ki te \frac{1}{4} mā te whakarea -2 ki te tau huripoki o \frac{1}{4}.
x^{2}-8x=12
Whakawehe 3 ki te \frac{1}{4} mā te whakarea 3 ki te tau huripoki o \frac{1}{4}.
x^{2}-8x+\left(-4\right)^{2}=12+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=12+16
Pūrua -4.
x^{2}-8x+16=28
Tāpiri 12 ki te 16.
\left(x-4\right)^{2}=28
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{28}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=2\sqrt{7} x-4=-2\sqrt{7}
Whakarūnātia.
x=2\sqrt{7}+4 x=4-2\sqrt{7}
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}