Tauwehe
-\frac{\left(a-2\right)^{2}}{2}
Aromātai
-\frac{\left(a-2\right)^{2}}{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{-a^{2}+4a-4}{2}
Tauwehea te \frac{1}{2}.
p+q=4 pq=-\left(-4\right)=4
Whakaarohia te -a^{2}+4a-4. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -a^{2}+pa+qa-4. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te pq, he ōrite te tohu o p me q. I te mea kua tōrunga te p+q, he tōrunga hoki a p me q. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
p=2 q=2
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(-a^{2}+2a\right)+\left(2a-4\right)
Tuhia anō te -a^{2}+4a-4 hei \left(-a^{2}+2a\right)+\left(2a-4\right).
-a\left(a-2\right)+2\left(a-2\right)
Tauwehea te -a i te tuatahi me te 2 i te rōpū tuarua.
\left(a-2\right)\left(-a+2\right)
Whakatauwehea atu te kīanga pātahi a-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\frac{\left(a-2\right)\left(-a+2\right)}{2}
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}