Whakaoti mō x
x=-2
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{12}x^{2}+\frac{2}{3}x+\frac{5}{3}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-\frac{1}{12}\right)\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{12} mō a, \frac{2}{3} mō b, me \frac{5}{3} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-\frac{1}{12}\right)\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
Pūruatia \frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+\frac{1}{3}\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
Whakareatia -4 ki te -\frac{1}{12}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4+5}{9}}}{2\left(-\frac{1}{12}\right)}
Whakareatia \frac{1}{3} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{2}{3}±\sqrt{1}}{2\left(-\frac{1}{12}\right)}
Tāpiri \frac{4}{9} ki te \frac{5}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{2}{3}±1}{2\left(-\frac{1}{12}\right)}
Tuhia te pūtakerua o te 1.
x=\frac{-\frac{2}{3}±1}{-\frac{1}{6}}
Whakareatia 2 ki te -\frac{1}{12}.
x=\frac{\frac{1}{3}}{-\frac{1}{6}}
Nā, me whakaoti te whārite x=\frac{-\frac{2}{3}±1}{-\frac{1}{6}} ina he tāpiri te ±. Tāpiri -\frac{2}{3} ki te 1.
x=-2
Whakawehe \frac{1}{3} ki te -\frac{1}{6} mā te whakarea \frac{1}{3} ki te tau huripoki o -\frac{1}{6}.
x=-\frac{\frac{5}{3}}{-\frac{1}{6}}
Nā, me whakaoti te whārite x=\frac{-\frac{2}{3}±1}{-\frac{1}{6}} ina he tango te ±. Tango 1 mai i -\frac{2}{3}.
x=10
Whakawehe -\frac{5}{3} ki te -\frac{1}{6} mā te whakarea -\frac{5}{3} ki te tau huripoki o -\frac{1}{6}.
x=-2 x=10
Kua oti te whārite te whakatau.
-\frac{1}{12}x^{2}+\frac{2}{3}x+\frac{5}{3}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-\frac{1}{12}x^{2}+\frac{2}{3}x+\frac{5}{3}-\frac{5}{3}=-\frac{5}{3}
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.
-\frac{1}{12}x^{2}+\frac{2}{3}x=-\frac{5}{3}
Mā te tango i te \frac{5}{3} i a ia ake anō ka toe ko te 0.
\frac{-\frac{1}{12}x^{2}+\frac{2}{3}x}{-\frac{1}{12}}=-\frac{\frac{5}{3}}{-\frac{1}{12}}
Me whakarea ngā taha e rua ki te -12.
x^{2}+\frac{\frac{2}{3}}{-\frac{1}{12}}x=-\frac{\frac{5}{3}}{-\frac{1}{12}}
Mā te whakawehe ki te -\frac{1}{12} ka wetekia te whakareanga ki te -\frac{1}{12}.
x^{2}-8x=-\frac{\frac{5}{3}}{-\frac{1}{12}}
Whakawehe \frac{2}{3} ki te -\frac{1}{12} mā te whakarea \frac{2}{3} ki te tau huripoki o -\frac{1}{12}.
x^{2}-8x=20
Whakawehe -\frac{5}{3} ki te -\frac{1}{12} mā te whakarea -\frac{5}{3} ki te tau huripoki o -\frac{1}{12}.
x^{2}-8x+\left(-4\right)^{2}=20+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=20+16
Pūrua -4.
x^{2}-8x+16=36
Tāpiri 20 ki te 16.
\left(x-4\right)^{2}=36
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=6 x-4=-6
Whakarūnātia.
x=10 x=-2
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}