Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Tohaina

-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tāpirihia te \frac{1}{3} ki te \frac{7}{9}, ka \frac{10}{9}.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tātaihia te \frac{10}{9} mā te pū o 2, kia riro ko \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Whakareatia te \frac{1}{4} ki te -8, ka -2.
-\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tangohia te \frac{3}{2} i te -2, ka -\frac{7}{2}.
-\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Whakawehe \frac{100}{81} ki te -\frac{7}{2} mā te whakarea \frac{100}{81} ki te tau huripoki o -\frac{7}{2}.
-\left(-\frac{200}{567}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Whakareatia te \frac{100}{81} ki te -\frac{2}{7}, ka -\frac{200}{567}.
\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Ko te tauaro o -\frac{200}{567} ko \frac{200}{567}.
\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tātaihia te -\frac{1}{6} mā te pū o 2, kia riro ko \frac{1}{36}.
\frac{737}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tangohia te \frac{1}{36} i te \frac{200}{567}, ka \frac{737}{2268}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}
Tangohia te \frac{1}{5} i te \frac{1}{4}, ka \frac{1}{20}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}
Tangohia te \frac{2}{5} i te 1, ka \frac{3}{5}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{737}{2268}+\frac{1}{20}\times \frac{25}{9}
Whakawehe \frac{1}{20} ki te \frac{9}{25} mā te whakarea \frac{1}{20} ki te tau huripoki o \frac{9}{25}.
\frac{737}{2268}+\frac{5}{36}
Whakareatia te \frac{1}{20} ki te \frac{25}{9}, ka \frac{5}{36}.
\frac{263}{567}
Tāpirihia te \frac{737}{2268} ki te \frac{5}{36}, ka \frac{263}{567}.