Aromātai
\frac{263}{567}\approx 0.463844797
Tauwehe
\frac{263}{3 ^ {4} \cdot 7} = 0.4638447971781305
Tohaina
Kua tāruatia ki te papatopenga
-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tāpirihia te \frac{1}{3} ki te \frac{7}{9}, ka \frac{10}{9}.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tātaihia te \frac{10}{9} mā te pū o 2, kia riro ko \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tangohia te \frac{1}{2} i te 1, ka \frac{1}{2}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Whakareatia te \frac{1}{4} ki te -8, ka -2.
-\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tangohia te \frac{3}{2} i te -2, ka -\frac{7}{2}.
-\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Whakawehe \frac{100}{81} ki te -\frac{7}{2} mā te whakarea \frac{100}{81} ki te tau huripoki o -\frac{7}{2}.
-\left(-\frac{200}{567}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Whakareatia te \frac{100}{81} ki te -\frac{2}{7}, ka -\frac{200}{567}.
\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Ko te tauaro o -\frac{200}{567} ko \frac{200}{567}.
\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tātaihia te -\frac{1}{6} mā te pū o 2, kia riro ko \frac{1}{36}.
\frac{737}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Tangohia te \frac{1}{36} i te \frac{200}{567}, ka \frac{737}{2268}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}
Tangohia te \frac{1}{5} i te \frac{1}{4}, ka \frac{1}{20}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}
Tangohia te \frac{2}{5} i te 1, ka \frac{3}{5}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}
Tātaihia te \frac{3}{5} mā te pū o 2, kia riro ko \frac{9}{25}.
\frac{737}{2268}+\frac{1}{20}\times \frac{25}{9}
Whakawehe \frac{1}{20} ki te \frac{9}{25} mā te whakarea \frac{1}{20} ki te tau huripoki o \frac{9}{25}.
\frac{737}{2268}+\frac{5}{36}
Whakareatia te \frac{1}{20} ki te \frac{25}{9}, ka \frac{5}{36}.
\frac{263}{567}
Tāpirihia te \frac{737}{2268} ki te \frac{5}{36}, ka \frac{263}{567}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}