Aromātai
\frac{5\sqrt{3}}{16}-\frac{9}{4}\approx -1.708734123
Tauwehe
\frac{5 \sqrt{3} - 36}{16} = -1.708734122634726
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{\sqrt{3}}{4}\right)\times \left(\frac{3}{2}\right)^{2}\left(\sqrt{3}\right)^{2}-\frac{\sqrt{3}}{2}\times \frac{3}{2}\sqrt{3}+2\sqrt{3}
Whakarohaina te \left(\frac{3}{2}\sqrt{3}\right)^{2}.
\left(-\frac{\sqrt{3}}{4}\right)\times \frac{9}{4}\left(\sqrt{3}\right)^{2}-\frac{\sqrt{3}}{2}\times \frac{3}{2}\sqrt{3}+2\sqrt{3}
Tātaihia te \frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
\left(-\frac{\sqrt{3}}{4}\right)\times \frac{9}{4}\times 3-\frac{\sqrt{3}}{2}\times \frac{3}{2}\sqrt{3}+2\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
\left(-\frac{\sqrt{3}}{4}\right)\times \frac{27}{4}-\frac{\sqrt{3}}{2}\times \frac{3}{2}\sqrt{3}+2\sqrt{3}
Whakareatia te \frac{9}{4} ki te 3, ka \frac{27}{4}.
\frac{-\sqrt{3}\times 27}{4\times 4}-\frac{\sqrt{3}}{2}\times \frac{3}{2}\sqrt{3}+2\sqrt{3}
Me whakarea te -\frac{\sqrt{3}}{4} ki te \frac{27}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\sqrt{3}\times 27}{4\times 4}-\frac{\sqrt{3}\times 3}{2\times 2}\sqrt{3}+2\sqrt{3}
Me whakarea te \frac{\sqrt{3}}{2} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\sqrt{3}\times 27}{4\times 4}-\frac{\sqrt{3}\times 3\sqrt{3}}{2\times 2}+2\sqrt{3}
Tuhia te \frac{\sqrt{3}\times 3}{2\times 2}\sqrt{3} hei hautanga kotahi.
\frac{-\sqrt{3}\times 27}{4\times 4}-\frac{3\times 3}{2\times 2}+2\sqrt{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{-\sqrt{3}\times 27}{4\times 4}-\frac{9}{2\times 2}+2\sqrt{3}
Whakareatia te 3 ki te 3, ka 9.
\frac{-\sqrt{3}\times 27}{4\times 4}-\frac{9}{4}+2\sqrt{3}
Whakareatia te 2 ki te 2, ka 4.
\frac{-\sqrt{3}\times 27}{4\times 4}-\frac{9\times 4}{4\times 4}+2\sqrt{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4\times 4 me 4 ko 4\times 4. Whakareatia \frac{9}{4} ki te \frac{4}{4}.
\frac{-\sqrt{3}\times 27-9\times 4}{4\times 4}+2\sqrt{3}
Tā te mea he rite te tauraro o \frac{-\sqrt{3}\times 27}{4\times 4} me \frac{9\times 4}{4\times 4}, me tango rāua mā te tango i ō raua taurunga.
\frac{-27\sqrt{3}-36}{4\times 4}+2\sqrt{3}
Mahia ngā whakarea i roto o -\sqrt{3}\times 27-9\times 4.
\frac{-27\sqrt{3}-36}{4\times 4}+\frac{2\sqrt{3}\times 4\times 4}{4\times 4}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{3} ki te \frac{4\times 4}{4\times 4}.
\frac{-27\sqrt{3}-36+2\sqrt{3}\times 4\times 4}{4\times 4}
Tā te mea he rite te tauraro o \frac{-27\sqrt{3}-36}{4\times 4} me \frac{2\sqrt{3}\times 4\times 4}{4\times 4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-27\sqrt{3}-36+32\sqrt{3}}{4\times 4}
Mahia ngā whakarea i roto o -27\sqrt{3}-36+2\sqrt{3}\times 4\times 4.
\frac{5\sqrt{3}-36}{4\times 4}
Mahia ngā tātaitai i roto o -27\sqrt{3}-36+32\sqrt{3}.
\frac{5\sqrt{3}-36}{16}
Whakarohaina te 4\times 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}